

Publication Number 6500-50A

MCS6500

MICROCOMPUTER FAMILY

PROGRAMMING MANUAL

JANUARY 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational purposes
only and is subject to change without notice.

Second Edition

Reproduced – 2022
This Revision: R220803-01

MOS TECHNOLOGY, INC.

950 Rittenhouse Road
Norristown, PA. 19401

ii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTORY REMARKS

1.0 Manual Introduction .. 1

1.1 Microprocessor Architecture ... 2

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 The Data Bus .. 3

2.1 The Accumulator .. 4

2.1.1 LDA – Load Accumulator With Memory .. 4

2.1.2 STA – Store Accumulator In Memory .. 5

2.2 The Arithmetic Unit .. 6

2.2.1 ADC – Add Memory To Accumulator With Carry 7

2.2.1.0 Multiple Precision Addition .. 8

2.2.1.1 Signed Arithmetic .. 10

2.2.1.2 Decimal Addition ... 13

2.2.1.3 Add Summary... 14

2.2.2 SBC – Subtract Memory From Accumulator With Borrow 14

2.2.2.0 Multiple Precision Subtraction ... 16

2.2.2.1 Signed Arithmetic .. 18

2.2.2.2 Decimal Subtract.. 19

2.2.3 Carry And Overflow During Arithmetic Operations 20

2.2.4 Logical Operands ... 20

2.2.4.1 AND – “AND” Memory With Accumulator 20

2.2.4.2 ORA – “OR” Memory With Accumulator................................ 21

2.2.4.3 EOR – “Exclusive Or” Memory With Accumulator 21

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER

3.0 Carry Flag (C) ... 24

3.0.1 SEC – Set Carry Flag .. 24

3.0.2 CLC – Clear Carry Flag .. 25

3.1 Zero Flag (Z) .. 25

3.2 Interrupt Disable (I)... 25

3.2.1 SEI – Set Interrupt Disable .. 26

3.2.2 CLI – Clear Interrupt Disable ... 26

3.3 Decimal Mode Flag (D) ... 26

3.3.1 SED – Set Decimal Mode .. 26

3.3.2 CLD – Clear Decimal Mode ... 27

3.4 Break Command (B) ... 27

iii

3.5 Expansion Bit .. 27

3.6 Overflow (V) .. 27

3.6.1 CLV – Clear Overflow Flag ... 28

3.6.2 Determination Of Overflow ... 28

3. 7 Negative Flag (N) .. 29

3.8 Flag Summary .. 30

CHAPTER 4 TEST BRANCH AND JUMP INSTRUCTIONS

4.0 Concepts Of Program Sequence ... 31

4.0.1 Use Of Program Counter To Fetch An Instruction 33

4.0.2 JMP – Jump To New Location .. 36

4.1 Branching .. 37

4.1.1 Basic Concept Of Relative Addressing .. 38

4.1.2 Branch Instructions ... 40

4.1.2.1 BMI – Branch On Result Minus... 40

4.1.2.2 BPL – Branch On Result Plus .. 40

4.1.2.3 BCC – Branch On Carry Clear ... 40

4.1.2.4 BCS – Branch On Carry Set .. 40

4.1.2.5 BEQ – Branch On Result Zero ... 41

4.1.2.6 BNE – Branch On Result Not Zero .. 41

4.1.2.7 BVS – Branch On Overflow Set ... 41

4.1.2.8 BMC – Branch On Overflow Clear .. 41

4.1.3 Branch Summary ... 42

4.1.4 Solution To Branch Out Of Range ... 42

4.2 Test Instructions .. 45

4.2.1 CMP – Compare Memory And Accumulator............................... 45

4.2.2 Bit Testing ... 47

4.2.2.1 BIT – Test Bits In Memory With Accumulator 47

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

5.0 Addressing Techniques ... 50

5.1 Concepts Of Pipelining And Program Sequence 52

5.2 Memory Utilization ... 56

5.2.1 I/O Control .. 56

5.2.2 Memory Allocation ... 57

5.3 Implied Addressing ... 57

5.4 Immediate Addressing ... 59

5.5 Absolute Addressing .. 59

5.6 Zero Page Addressing ... 61

5.7 Relative Addressing ... 63

iv

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS
6.0 General Concept Of Indexing ... 69
6.1 Absolute Indexed .. 79
6.2 Zero Page Indexed .. 81
6.3 Indirect Addressing ... 83
6.4 Indexed Indirect Addressing .. 85
6.5 Indirect Indexed Addressing .. 87
6.6 Indirect Absolute ... 92
6.7 Application Of Indexes ... 92

CHAPTER 7 INDEX REGISTER INSTRUCTIONS
7.0 LDX – Load Index Register X From Memory... 96
7.1 LDY – Load Index Register Y From Memory... 96
7.2 STX – Store Index Register X In Memory .. 97
7.3 STY – Store Index Register Y In Memory .. 97
7.4 INX – Increment Index Register X By One .. 97
7.5 INY – Increment Index Register Y By One .. 97
7.6 DEX – Decrement Index Register X By One .. 98
7.7 DEY – Decrement Index Register Y By One .. 98
7.8 CPX – Compare Index Register X To Memory 99
7.9 CPY – Compare Index Register Y To Memory 99
7.10 Transfers Between The Index Registers And Accumulator........................ 100
7.11 TAX – Transfer Accumulator To Index X ... 100
7.12 TXA – Transfer Index X To Accumulator ... 100
7.13 TAY – Transfer Accumulator To Index Y ... 101
7.14 TYA – Transfer Index Y To Accumulator ... 101
7.15 Summary Of Index Register Applications And Manipulations 102

CHAPTER 8 STACK PROCESSING
8.0 Introduction To Stack And To Push Down Stack Concept 103
8.1 JSR – Jump To Subroutine .. 106
8.2 RTS – Return From Subroutine ... 108
8.3 Implementation Of Stack In MCS6501 Through MCS6505 112
8.3.1 Summary Of Stack Implementation ... 115
8.4 Use Of The Stack By The Programmer ... 116
8.5 PHA – Push Accumulator On Stack ... 117
8.6 PLA – Pull Accumulator From Stack .. 118
8.7 Use Of Pushes And Pulls To Communicate Variables Between
 Subroutine Operations.. 119
8.8 TXS – Transfer Index X To Stack Pointer .. 120
8.9 TSX – Transfer Stack Pointer To Index X .. 122
8.10 Saving Of The Processor Status Register.. 122
8.11 PHP – Push Processor Status On Stack .. 122
8.12 PLP – Pull Processor Status From Stack ... 123
8.13 Summary Of The Stack ... 123

v

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS
9.0 Vectors ... 124
9.1 Reset Or Restart ... 125
9.2 Start Function .. 126
9.3 Programmer Considerations For Initialization Sequences 127
9.4 Restart .. 129
9.5 Interrupt Considerations ... 129
9.6 RTI – Return From Interrupt .. 132
9.7 Software Polling For Interrupt Causes .. 137
9.8 Fully Vectored Interrupts .. 140
9.8.1 JMP Indirect .. 141
9.9 Interrupt Summary ... 142
9.10 Non-Maskable Interrupt ... 142
9.11 BRK – Break Command .. 144
9.12 Memory Map .. 146

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS
10.0 Definition Of Shift And Rotate .. 148
10.1 LSR – Logical Shift Right ... 149
10.2 ASL – Arithmetic Shift Left ... 150
10.3 ROL – Rotate Left .. 150
10.4 ROR – Rotate Right ... 151
10.5 Accumulator Mode Addressing ... 151
10.6 Read/Modify/Write Instructions .. 152
10.7 INC – Increment Memory By One .. 156
10.8 DEC – Decrement Memory By One ... 156
10.9 General Note On Read/Modify/Write Instructions 156

CHAPTER 11 PERIPHERAL PROGRAMMING
11.0 Review Of MCS6520 For I/O Operations .. 157
11.1 MCS6520 Interrupt Control ... 159
11.2 Implementation Tricks For Use Of The MCS6520 Peripheral
 Interface Devices ... 162
11.2.1 Shortcut Polling Sequences .. 162
11.2.2 Bit Organization On MCS6520’s ... 163
11.2.3 Use Of Read/Modify/Write Instruction For Keyboard
 Encoding .. 164
11.3 MCS6530 Programming .. 167
11.3.1 Reading Of The Counter Register .. 167
11.4 How To Organize To Implement Coding .. 167
11.4.1 Label Standards .. 169
11.5 Comprehensive I/O Program .. 171

vi

APPENDICES

A. Instruction List, Alphabetic by Mnemonic, Definition
 of Instruction Groups .. A-1

 MCS6501 – MCS6505 Microprocessor Instruction Set –
 Alphabetic Sequence ... A-2

 A.1 Introductions ... A-3
 A.2 Group One Instructions .. A-3
 A.3 Group Two Instructions ... A-4
 A.4 Group Three Instructions .. A-5

B. Instruction List, Alphabetic by Mnemonic, with OP CODES,
 Execution Cycles and Memory Requirements B-1

C. Instruction Addressing Modes and Related Execution Times C-1

D. Operation Code Instruction Listing Hexadecimal Sequence D-1

E. Summary of Addressing Modes

 E.1 Implied Addressing .. E-2
 E.2 Immediate Addressing .. E-3
 E.3 Absolute Addressing ... E-3
 E.4 Zero Page Addressing .. E-4
 E.5 Relative Addressing .. E-4
 E.6 Absolute Indexed Addressing ... E-5
 E.7 Zero Page Indexed Addressing .. E-6
 E.8 Indexed Indirect Addressing .. E-7
 E.9 Indirect Indexed Addressing .. E-8

F. MCS650X Programming Model .. F-1

G. Discussion – Indirect Addressing ... G-1

H. Review of Binary and Binary Coded Decimal Arithmetic H-1

vii

LIST OF EXAMPLES

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.1 Add 2 Numbers with Carry; No Carry Generation 7

2.2 Add 2 Numbers with Carry; Carry Generation 8

2.3 Adding Two 16-Bit Numbers .. 9

2.4 Add Two 16-Bit Numbers, No Carry from Low Order Add 9

2.5 Add Two 16-Bit Numbers, with Carry from Low Order Add 10

2.6 Add 2 Positive Numbers with No Overflow .. 11

2.7 Add 2 Positive Numbers with Overflow .. 12

2.8 Add Positive and Negative Number with Positive Result 12

2.9 Add Positive and Negative Number with Negative Result 12

2.10 Add 2 Negative Numbers without Overflow 12

2.11 Add 2 Negative Numbers with Overflow ... 13

2.12 Decimal Addition... 13

2.13 Subtract 2 Numbers with Borrow; Positive Result 15

2.14 Subtract 2 Numbers with Borrow; Negative Result 16

2.15 Subtracting Two 16-Bit Numbers .. 16

2.16 Subtracting in Double Precision Format; Positive Result 17

2.17 Subtracting in Double Precision Format; Negative Result 18

2.18 Decimal Subtraction ... 19

2.19 Clearing a Bit with “AND” .. 21

2.20 Setting a Bit with “OR” .. 21

2.21 Complementing a Byte with “EOR” ... 22

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

4.1 Accessing Instructions with the P-Counter Value 33

4.2 Accessing Data Addressing with P-Counter Value 34

4.3 Use of JMP Instruction .. 36

4.4 Illustration of “Branch on Carry Set” .. 38

4.5 Sequencing Two Branch Instructions .. 39

4.6 Use of JMP to Branch Out of Range... 43

4.7 Using the CMP Instruction .. 46

4.8 Sample Program using the BIT Test .. 48

viii

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

5.1 Using Absolute Addressing ... 51

5.2 Demonstration of “Pipelining” Effect .. 54

5.3 Illustration of Implied Addressing .. 58

5.4 Illustration of Immeditate Addressing ... 59

5.5 Illustration of Absolute Addressing ... 60

5.6 Illustration of Zero Page Addressing .. 62

5.7 Illustration of Relative Addressing; Branch not Taken 63

5.8 Illustration of Relative Addressing; Branch Positive Taken, No
 Crossing of Page Boundaries ... 64

5.9 Illustration of Relative Addressing; Branch Negative Taken, Crossing
 of Page Boundaries .. 65

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

6.1 Moving Five Bytes of Data with Straight Line Code 70

6.2 Moving Five Bytes of Data with Loop .. 72

6.3 Coded Detail of Moving Fields with Loop ... 73

6.4 Moving Five Bytes of Data with Index Register 76

6.5 Moving Five Bytes of Data by Decrementing the Index Register 77

6.6 Absolute Indexed; with No Page Crossing ... 79

6.7 Absolute Indexed; with Page Crossing .. 80

6.8 Illustration of Zero Page Indexing .. 82

6.9 Demonstrating the Wrap-Around ... 83

6.10 Illustration of Indexed Indirect Addressing ... 86

6.11 Indirect Indexed Addressing (No Page Crossing)................................ 88

6.12 Indirect Indexed Addressing (with Page Crossing).............................. 89

6.13 Absolute Indexed Addressing – Sample Program 90

6.14 Indexed Indirect Addressing – Sample Program 90

6.15 Move N Bytes (N < 256) .. 94

6.16 Move N Bytes (N > 256) ... 945

CHAPTER 8 STACK POINTING

 8.1 Basic Stack Map for 3-Deep JMP to Subroutine 104

 8.2 Basic Stack Operation .. 105

 8.3 Illustration of JSR Instruction .. 106

 8.4 Illustration of RTS Instruction .. 109

 8.5 Memory Map for RTS Instruction .. 111

 8.6 Expansion of RTS Memory Map ... 111

 8.7 Call-a-Move Subroutine Using Preassigned Memory Locations 116

 8.8 Operation of PHA, Assuming Stack at 01FF 118

 8.9 Operation of PLA Stack from Example 8.8 119

 8.10 Call-a-Move Subroutine Using the Stack to Communicate 119

 8.11 Jump to Subroutine (JSR) Followed by Parameters 121

ix

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS

 9.1 Illustration of Start Cycle.. 127

 9.2 Interrupt Sequence .. 131

 9.3 Return from Interrupt ... 133

 9.4 Illustration of Save and Restore for Interrupts 133

 9.5 Interrupt Polling .. 137

 9.6 Illustration of JMP Indirect ... 141

 9.7 Break-Interrupt Processing ... 144

 9.8 Patching with a Break Utilizing PROMs .. 145

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

 10.1 General Shift and Rotate .. 148

 10.2 Rotate Accumulator Left ... 151

 10.3 Rotate Memory Left Absolute,X .. 152

 10.4 Move a New BCD Number into Field .. 155

CHAPTER 11 PERIPHERAL PROGRAMMING

 11.1 The MCS6520 Register Map .. 157

 11.2 General PIA Initialization ... 158

 11.3 Interrupt Mode Setup .. 160

 11.4 CA2; CB2 Output Control .. 160

 11.5 Routine to Change CB1 or CB2 Using Bit 3 Control 161

 11.6 Polling the MCS6520 .. 162

 11.7 Coding for Strobing and 8 x 8 Keyboard .. 165

 11.8 Polling for Active Signal ... 173

x

LIST OF FIGURES

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.1 Partial Block Diagram of the MCS650X ... 3

2.2 Partial Block Diagram Including Arithmetic Logic Unit of MCS650X 6

2.3 Byte Orientation with Sign Position ... 11

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER

3.1 Partial Block Diagram of MCS650X Including P-Register 23

3.2 Processor Status Register, “P” .. 24

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

4.1 Partial Block Diagram of MCS650X Including Program

 Counter and Internal Address Bus ... 31

4.2 Use of Conditional Test.. 37

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

5.1 Address Bus and Relation to Memory Field .. 53

5.2 Example of Timing – MCS650X Family ... 54

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

6.1 Moving Five Bytes of Data with Loop .. 72

6.2 Moving Five Bytes of Data with Counter ... 75

6.3 Partial Block Diagram of MCS650X Including Index Register 78

6.4 Indirect Addressing – Pictorial Drawing .. 84

6.5 Indexed Indirect Addressing .. 85

6.6 Indirect Indexed Addressing .. 87

CHAPTER 8 STACK PROCESSING

8.1 Partial Block Diagram of MCS650X Including Stack Pointer, S 113

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.1 Flow Chart for Moving in a New BCD Number................................. 154

CHAPTER 11 PERIPHERAL PROGRAMMING

11.1 Keyboard Encoding Matrix Program .. 164

11.2 Keyboard Strobe Sequence .. 166

11.3 Program Flow-Polling for Active Signal .. 172

1

CHAPTER 1

INTRODUCTORY REMARKS

1.0 MANUAL INTRODUCTION

Welcome to the MCS650X product family. This manual is designed to

work in conjunction with the hardware Manual which describes the basic

hardware considerations when using the MOS Technology, Inc.

microcomputer family.

Before reading this manual, it is suggested that the reader acquaint

himself with the hardware Manual in order to understand the components

available in this system, how these components are interconnected, and

their basic architecture. Developed in this manual is the concept of

microprocessor internal architecture and how it is used, with attention

given to input/output considerations. Familiarity with the hardware will

facilitate easier understanding of these important concepts.

In order to best serve the total customer base, this manual is written in

two levels. The first is a very basic introduction to the MCS650X family,

and the second level is for the user who has to refer to the manual on

more than an occasional basis and who wants to rapidly scan and find

specific sections. For the user who is quite familiar with programming and

the MCS650X instruction set, the appendices are the best reference in the

sense that all the data which is discussed in detail in the manual is

summarized in a series of tables for convenience.

It is recommended that the user who is an experienced programmer and

familiar with microprocessors still take the time to read through the

manual in detail. Some of the architectural concepts are different from

those found in second generation machines and this manual instructs the

user how to optimize the utilization of the microprocessor while providing

an introduction of its basic concepts.

2

Criticism of this manual is welcomed at all times. Of particular interest are

cases where one could not, by use of the index and appendix, rapidly

find the answer to a question which developed in the course of designing

a microprocessor system. Welcomed are any comments which will

enhance the content and format of this manual in future editions or

addendums.

1.1 MICROPROCESSOR ARCHITECTURE

The MCS6501, MCS6502, MCS6503, MCS650X, and HCS6503 are all

8-bit microprocessors. That means that 8 bits of data are transferred or

operated upon during each instruction cycle or operation cycle.

All devices in the MCS650X family operate on data 8 bits at a time,

although some of the operations will look like serial or 16-bit wide

operations. In a future section, discussed will be the use of sequential

operations on an 8-bit basis and how one can accomplish 16-bit effective

operands and addressing.

The computer industry, for some time, has been treating 8-bit

combinations of data by a term known as a “byte.” In many large

computers which operate simultaneously on multiple bytes of data, the

number of bytes which are transferred and operated on by the machine

in parallel are called a “word.” Because these microprocessors are 8-bit

microprocessors, the words and bytes are of equal length. Therefore, for

convenience through the discussion of the basic 8-bit processors, “byte”

and “word” will be used synonymously although in some of the expanded

versions there will exist a 16-bit word composed of two 8-bit bytes.

3

CHAPTER 2

THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 THE DATA BUS

Although most of the following discussion will consider how one operates

with a general purpose register called the accumulator, it must be

understood that data has to transfer between the accumulator and

outside sources by means of passing through the microprocessor to 8 lines

called the data bus. The outside sources include the program which

controls the microprocessor, the memory which will be used as interim

storage for internal registers when they are to be used in a current

operation, and the actual communications to the world through

input/output ports. Later in this document performance of transfers to and

from each of these devices will be discussed. However, at present,

discussion will center on the microprocessor itself.

Partial Block Diagram of MCS650X

FIGURE 2.1

The only operation of the data bus is to transfer data between memory

and the processor's internal registers such as the accumulator. Figure 2.1

displays the basic communication between the accumulator, A, and the

memory, M, through the use of 8 bi-directional data lines called the data

bus.

4

2.1 THE ACCUMULATOR

The accumulator is a register in which data is kept on which operations
are performed. All operations between memory locations must be
communicated through the accumulator or one of the auxiliary index
registers. The accumulator is used as a temporary storage in moving data
from one memory location to another. Therefore, the first use for the
accumulator (A) is just in transferring data from memory to the
accumulator or from the accumulator to memory. One can bring data into
the accumulator, perform operations such as AND/OR on it, test the results
of those operations, set new bits into it, or transfer it back out to the
outside world. It serves as an interim storage for a series of operations
such as adding 2 values together; where one of them is loaded into the
accumulator, the second one added to it, and the results stored in the
accumulator. The accumulator really acts as two functions: 1) It is one of
the primary storage points for the machine; 2) It is the point at which
intermediate results are normally stored.

2.1.1 LDA – Load Accumulator with Memory

When instruction LDA is executed by the microprocessor, data is
transferred from memory to the accumulator and stored in the
accumulator.

Rather than continuing to give a word picture of the operation, introduced
will be the symbolic representation M → A, where the arrow means
“transfer to.” Therefore the LDA instruction symbolic representation is
read, “memory transferred to the accumulator.”

LDA affects the contents of the accumulator, does not affect the carry or
overflow flags; sets the zero flag if the accumulator is zero as a result of
the LDA, otherwise resets the zero flag; sets the negative flag if bit 7 of
the accumulator is a 1, otherwise resets the negative flag.

Although yet to be developed is the concept of addressing modes, for
reference purpose, LDA is a “Group One” instruction and has all of the
major addressing modes of the machine available to it as stated in
Appendix A. These addressing modes include Immediate; Absolute; Zero
Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed Indirect; and
Indirect Indexed.

5

2.1.2 STA – Store Accumulator in Memory

This instruction transfers the contents of the accumulator to memory.

The symbolic representation for this instruction is A → M. This instruction

affects none of the flags in the processor status register and does not

affect the accumulator.

It is a “Group One” instruction and has the following addressing modes

available to it: Absolute; Zero Page; Absolute,X; Absolute,Y; Zero

Page,X; Indexed Indirect; and Indirect Indexed.

6

2.2 THE ARITHMETIC UNIT

One of the functions to be expected from any computer is the ability to

compute or perform arithmetic operations. Even in a simple control

problem, one often finds it useful to add 2 numbers in order to determine

that a value has been reached, or subtract 2 numbers to calculate a new

value which must be obtained. In addition, many problems involve some

rudimentary form of decimal or binary arithmetic; certainly many

applications of the microprocessor will involve both. The MCS650X has

an 8-bit arithmetic unit which interfaces to the accumulator as shown in

Figure 2.2.

Partial Block Diagram including Arithmetic Logic Unit of MCS650X

FIGURE 2.2

The arithmetic unit is composed of several major parts. The most important

of these is the circuitry necessary to perform a two’s complement add of

8-bit parallel values and generate an 8 parallel bit binary result plus a

carry. A review of binary and binary coded decimal (BCD) arithmetic is

presented in Appendix H. However, a quick review of the concept of

“carry” is in order. The largest range than can be represented in an 8-

bit number is 256 with values ranging between 0 and 255. If we add

any 2 numbers which result in a sum which is greater than 255 we

represent the result with a ninth bit plus the 8 bits of the excess over 255.

The ninth bit is called “carry.”

7

2.2.1 ADC – Add Memory to Accumulator with Carry

This instruction adds the value of memory and carry from the previous
operation to the value of the accumulator and stores the result in the
accumulator.

The symbolic representation for this instruction is: A + M + C → A

This instruction affects the accumulator; sets the carry flag when the sum
of a binary add exceeds 255 or when the sum of a decimal add exceeds
99, otherwise carry is reset. The overflow flag is set when the sign or bit
7 is changed due to the result exceeding +127 or –128, otherwise
overflow is reset. The negative flag is set if the accumulator result contains
bit 7 on, otherwise the negative flag is reset. The zero flag is set if the
accumulator result is 0, otherwise the zero flag is reset.

It is a “Group One” instruction and has the following addressing modes:
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

The ninth bit of the result is stored in the carry flag and the remaining 8
bits reside in the accumulator. The carry flag can be thought of as a flag
bit which is remote from the accumulator itself but which is directly
affected by accumulator operations as though it were a ninth bit in the
accumulator. The primary reason for not viewing the carry bit as merely
a ninth bit in the accumulator is that one has program control over its state
by being able to set (to “1”) or clear (to “0”) the bit and, of course, it is
not part of the 8-bit accumulator in data transfer operations. Examples
employing the Add with Carry operation follow.

Example 2.1: Add 2 numbers with carry; no carry generation

 0000 1101 13 = (A)*
 1101 0011 211 = (M)*
 1 1 = CARRY
 Carry = 0 1110 0001 225 = (A)

*(A) and (M) refer to the “contents” of the accumulator and “contents” of
memory respectively.

8

Example 2.2: Add 2 numbers with carry; carry generation

 1111 1110 254 = (A)
 0000 0110 6 = (M)
 1 1 = CARRY
Carry = 1 0000 0101 5 = (A)

While the accumulator contains “5,” the carry flag signals the user that

the result exceeded 255 and, therefore, the result can be properly

interpreted as 256 + 5 = 261.

2.2.1.0 Multiple Precision Addition

To perform the addition of 2 numbers, one issues to the microprocessor

an ADC instruction which adds the memory and the accumulator and

stores the results in the accumulator with the carry bit going set if the

results exceeded 255.

To add numbers which had significantly higher value than 255, it would

be necessary to represent these numbers by a series of serial 8-bit

numbers. With the 16 bits in 2 serial 8-bit numbers, it is possible to

represent binary numbers of greater than 65,000 in value. In order to

add two 16-bit numbers together and thus accomplish double precision

addition, one first loads the lowest byte of one number into the

accumulator, clears the carry flag and then adds the second number to

the first number in the accumulator using the ADC command. One would

then store this result into another memory location using the STA command.

The carry flag would now represent the carry from the lowest byte to the

highest byte. One could then load the high order byte of the first number,

add with carry again to the high value of the second number, and store

the result in the high order byte of the result. Thus, it can be seen that the

carry allows us to perform as much precision arithmetic as is necessary.

The example listing below displays the commands used to execute the

addition of two 16-bit numbers.

9

Example 2.3: Adding two 16-bit numbers

 High Order Byte Low Order byte
First Number H1 L1
Second Number H2 L2
Result of Addition H3 L3

LDA L1 Load low order byte, first number

CLC Clear carry flag (carry = 0)

ADC L2 Add L1 to low order byte, second number

STA L3 Store result in memory, carry flag is still set if set in

 ADC operation

LDA H1 Load high order byte, first number

ADC H2 Add H1 and carry value from first ADC operation to

 high order byte, second number

STA H3 Store result in memory

In this example it was necessary to clear the carry flag before starting
the add instruction. This, of course, means that commands exist that set
and clear the carry flag allowing for addition without values generated
from the prior operation. One could also, at the end of the program,
check to see if the result exceeded 16 bits by testing the carry flag.
Exactly how one alters and tests flags will be discussed in the Flag and
Branches Section. The examples below display the concept of carry from
the addition of the low order bytes.

Example 2.4: Add two 16-bit numbers, no carry from low order add

 0000 0001 0000 0010 258
 0001 0000 0001 0000 4112
 Add low order bytes: (clear carry)
 0000 0010 (A)
 0001 0000 (M)
Carry = 0 0001 0010 (A)
 Add high order bytes (carry = 0):
 0000 0001 (A)
 0001 0000 (M)
 0 CARRY
Carry = 0 0001 0001 (A)
 Result = 0001 000l 0001 0010 = 4370

10

Example 2.5: Add two 16-bit numbers, with carry from low order
 add

 0000 0001 1000 0000 384

 0000 0000 1000 0000 128

 Add low order bytes: (clear carry)

 1000 0000 (A)

 1000 0000 (M)

Carry = 1 0000 0000 (A)

 Add high order bytes: (carry = 1)

 0000 0001 (A)

 0000 0000 (M)

 1 CARRY

Carry = 0 0000 0010 (A)

 Result = 0000 0010 0000 0000 = 512

2.2.1.1 Signed Arithmetic

It is possible to look at the add operation and the way data is

represented in memory in a different way. If, in the 16-bit problem

(Examples 2.4 and 2.5), one were working with 15 bits of precision (in

other words, 15 bits of valid data) plus 1 bit of sign (0 for positive and

1 for negative), it would be possible to perform signed binary arithmetic

without changing the adder, but by merely changing the way the results

are interpreted. In order to facilitate this concept, the microprocessor has

the ability to represent positive or negative numbers by means of a sign

flag which will be discussed at length in Section 3.7. In the MCS650X

family, bit 7 is the sign position bit. This means that the highest order byte

in a series of bytes should have the sign in the eighth position. If, for

simplicity, one talks about signed 8-bit numbers, it would mean that one

was allowed only 128 combinations of each sign because that is the most

that can be represented in 7 bits, with the eighth bit or the highest bit

reserved for the sign position.

11

Byte Orientation with sign position

FIGURE 2.3

In the following examples of signed arithmetic it should be noted that

operations are occurring on a 7-bit field of numbers and that any carry

generated out of that field will reside in the eighth bit – not in the carry

flag discussed during the add operations. The generation of a carry out

of the field is the same as when adding two 8-bit numbers, except for

the fact that the normal carry flag does not correctly represent the fact

that the field has been exceeded. This is because the true carry from

adding the two 7-bit numbers resides in the sign bit position. Therefore,

the carry flag has no real meaning. Instead, there is a separate flag, the

overflow flag, used to indicate when a carry from 7 bits has occurred

and allows the user to write correction programs.

In each example, the negative numbers are in two's complement form.

Also included in each result will be the status of the carry and overflow

flags. The overflow flag is set whenever the sign bit (bit 7) is changed as

a result of the operation.

Example 2.6: Add 2 positive numbers with no overflow

 0000 0101 +5 (A)

 0000 0111 +7 (M)

Carry = 0 0000 1100 +12 (A)

Overflow = 0 “0” in bit 7 indicates positive result.

 Note that both the carry and overflow flag remain

 cleared.

12

Example 2.7: Add 2 positive numbers with overflow

 0111 1111 +127 (A)
 0000 0010 + 2 (M)
Carry = 0 1000 0001 “–127” (A)

Overflow = 1 “1” in bit 7 indicates negative result and the two's
 complement of the result is 127; however, the overflow
 flag is set indicating the allowable range was exceeded
 in the addition.

Therefore, examination of the overflow indicated that the result was in
fact not negative but that the bit 7 position represented an overflow
beyond the value of 127. Hence the user is flagged of an incorrect result
and a correction routine (program) must follow.

Example 2.8: Add positive and negative number with positive result

 0000 0101 +5 (A)
 1111 1101 –3 (M)
Carry = 1 0000 0010 +2 (A)

Overflow = 0 “0” in bit 7 indicates positive result. (Recall that
 though the carry flag is set, it has no meaning
 in signed operations.)

Example 2.9: Add positive and negative number with negative result

 0000 0101 +5 (A)
 1111 1001 –7 (M)
Carry = 0 1111 1110 –2 (A)

Overflow = 0 “1” in bit 7 indicates negative result.

Example 2.10: Add 2 negative numbers without overflow

 1111 1011 –5 (A)
 1111 1001 –7 (M)
Carry = 1 1111 0100 –12 (A)

Overflow = 0 “1” in bit 7 indicates negative result.

13

Example 2.11: Add 2 negative numbers with overflow

 1011 1110 –66 (A)
 1011 1111 –65 (M)
Carry = 1 0111 1101 “+125” (A)

Overflow = 1 “0” indicates positive result, but the overflow
 flag is set indicating that the allowable range
 was exceeded in the operation. Without the
 overflow indication, the result would be inter-
 preted as +125. The overflow, however,
 indicated that the result was negative and
 exceeded the value –128. Hence the user is
 flagged of an incorrect result, indicating the
 need for a correction routine.

2.2.1.2 Decimal Addition

There is a way for the user to organize data for decimal operations. The
MOS Technology, Inc. MCS650X microprocessors have a modified adder
which allows the user to represent his numbers as two 4-bit binary coded
decimals (BCD) numbers packed into a single byte. This is a unique
feature of the MCS650X family in that the operation in the following
example can be performed.

Example 2.12: Decimal addition

CLC Clear Carry Flag
SED Set Decimal Mode
LDA 0111 1001 79
ADC 0001 0100 +14
STA 1001 0011 93

The microprocessor adder has the unique capability of performing real
time correction to the normal expected binary result without any direct
interference from the programmer. Other popular microprocessors
require a separate instruction (Decimal Adjust) which corrects the direct
binary result of the arithmetic unit to obtain the same final results as are
available on this microprocessor directly.

In order to make the same arithmetic unit perform either as a binary
adder or as a decimal adder, the user chooses the mode in which he is
going to operate (either decimal or binary) by setting another flip-flop

14

in the microprocessor called the decimal flag. As shown in this example,
one not only initializes the adder by clearing the carry flag, but also puts
the processor into decimal mode with the SED instruction. Even though this
also requires 1 instruction, it is possible to put the machine in decimal
mode once and perform many long strings of decimal numbers without
further user intervention. The “Decimal Adjust” feature on other
microprocessors requires programming subsequent to each binary
operation.

2.2.1.3 Add Summary

In summary, the basic arithmetic unit is a binary adder which, under

control of the ADC command, performs binary arithmetic on the

accumulator and data, storing the result in the accumulator. Depending

on the way the user looks at the data which is presented to the adder

and the results which are obtained from it, the user can determine whether

or not the result exceeds 255 binary or 99 decimal; he can perform

precision arithmetic by use of the ninth bit or carry flag; he can control

whether or not the microprocessor is a decimal adder by setting the

decimal mode; and he can represent his numbers as signed binary

numbers by analyzing other flags that are set in the machine.

2.2.2 SBC – Subtract Memory from Accumulator with Borrow

This instruction subtracts the value of memory and borrow from the value

of the accumulator, using two's complement arithmetic, and stores the

result in the accumulator. Borrow is defined as the carry flag

complemented; therefore, a resultant carry flag indicates that a borrow

has not occurred.

The symbolic representation for this instruction is:

A – M – C → A.

This instruction affects the accumulator. The carry flag is set if the result is

greater than or equal to 0. The carry flag is reset: when the result is less

than 0, indicating a borrow. The overflow flag is set when the result

exceeds +l27 or –127, otherwise it is reset. The negative flag is set if the

15

result in the accumulator has bit 7 on, otherwise it is reset. The Z flag is

set if the result in the accumulator is 0, otherwise it is reset.

It is a “Group One” instruction. It has addressing modes Immediate;
Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed
Indirect; and Indirect Indexed.

In a binary machine, the classical way to perform arithmetic is by using
two's complement notation. In using two’s compliment notation, any
subtraction operation becomes a sequence of bit complementations and
additions. This reduces the complexity of the circuits required to perform
a subtraction.

When the SBC instruction is used in single precision subtraction, there will
normally be no borrow; therefore, the programmer must set the carry
flag, by using the SEC (Set carry to 1) instruction, before using the SBC
instruction. The microprocessor adds the carry flag to the complemented
memory data, resulting in a true two's complement form of the memory
value with its sign inverted.

Example 2.13: Subtract 2 numbers with borrow; positive result

Assume a single precision subtraction where A contains 5 and M contains
3. The carry flag must be set to a 1 using the SEC instruction, thereby
representing the no-borrow condition.

The adder changes the sign of M by taking the two's complement of M.
This involves complementing M and adding the carry bit.

 M = 3 0000 0011
 Complemented M 1111 1100
 Add C = 1 1
 –M = –3 1111 1101

The adder adds A and the two's complement –M together. This operation
occurs simultaneously with the complement operation.

 A = 5 0000 0101
 Add –M = –3 1111 1101
 Carry = 1 0000 0010 = +2

The presence of the carry flag after this operation indicates that No
Borrow was required, therefore the result is +2.

16

Example 2.14: Subtract 2 numbers with borrow; negative result

Assume a single precision subtraction where A contains 5 and M contains
6. Set the carry flag to a 1 with SEC to indicate No Borrow.

 M = 6 0000 0110
Complemented M 1111 1001
 Add C = 1 1
 –M = –6 1111 1010

 A = 5 0000 0101
 Add –M = –6 1111 1010
 Carry = 0 1111 1111 = –1

The absence of the carry flag after this operation indicates that a borrow

was required, therefore the result is a –1 in two's complement form. The

absolute (unsigned) result in straight binary could be obtained by taking

the two's complement of this number.

2.2.2.0 Multiple Precision Subtraction

Double precision subtraction is implemented in a fashion similar to

addition. An example for subtracting a 16-bit number and storing the

result follows:

Example 2.15: Subtracting two 16-bit numbers

 High Order Byte Low Order Byte
First Number Second Number H1 L1
Second Number H2 L2
Result of Subtraction H3 L3

SEC Set Carry
LDA L1 Load Low Order Byte, first Number
SBC L2 Subtract with Borrow, Low Order Byte of Second
 Number from L1
STA L3 Store Result in Memory
LDA H1 Load High Order Byte, First Number
SBC H2 Subtract with Borrow, High Order Byte of Second
 Number from H1
STA H3 Store Result in Memory

17

Example 2.16: Subtract in double precision format, positive result

Assume a double precision subtraction where 255 is to be subtracted
from 512 for an example. Since there has been no borrow coming into
this subtraction operation, the carry flag must be set.

Following are the 2 numbers in binary form:

 High Order Byte Low Order Byte
A field = 512 0000 0010 0000 0000
M field = 255 0000 0000 1111 1111

Since the adder can only operate on single byte numbers, the
programmer must operate on the low order bytes first.

 M = 1111 1111
Complemented M = 0000 0000
 Add C = 1
 –M 0000 0001

 A = 0000 0000
 Add –M = 0000 0001
 Carry = 0 0000 0001

The carry is brought over to the subtract operation on the high order
bytes.

 M = 0000 0000
Complemented M = 1111 1111
 Add C = 0 0
 –M 1111 1111

 A = 0000 0010
 Add –M = 1111 1111
 Carry = 1 0000 0001

The result in binary form follows:

Carry = 1 0000 0001 0000 0001 = +257

The presence of the carry flag after the highest order byte subtraction
indicates that the entire number required No Borrow, therefore it is a
positive number in straight binary form.

18

Example 2.17: Subtract in double precision format; negative result

Now assume a double precision subtraction where 512 is to be subtracted
from 255. Again, since there has been no borrow coming into this
subtraction operation, the carry flag must be set.

Following are the two numbers in binary form:

 High Order Byte Low Order Byte
A field = 255 0000 0000 1111 1111
M field = 512 0000 0010 0000 0000

Operating on the low order byte:

 M = 0000 0000
 M = 1111 1111
 Add C = 1 1
 Carry = 1 0000 0000 = –M

 A = 1111 1111
 Add –M = 1 0000 0000
 Carry = 1 1111 1111

The presence of the carry = 1 indicates no borrow.

The carry is now brought over to the high order byte subtract operation:

 M = 0000 0010
 M = 1111 1101
Add C = 1 1
 1111 1110
 A = 0000 0000
 M + C = 1111 1110
Carry = 0 1111 1110

The result in binary form is:

Carry = 0 1111 1110 1111 1111 = –257
Carry = 0 indicates the presence of a borrow, therefore the
 number is negative and is in two’s complement form.

2.2.2.1 Signed Arithmetic

Signed numbers can be subtracted, using the SBC instruction, just as easily
as they can be added. The microprocessor converts the numbers from
memory to its two's complemented form and then adds it to the value of

19

the accumulator just as it does in an unsigned subtract described in Section
2.2.2. The addition operation is identical to that described, and to the
examples given in Section 2.2.1.1

It should be remembered that before using the SBC instruction, either
signed or unsigned, the carry flag must be set to a 1 in order to indicate
a no borrow condition. The resultant carry flag has no meaning after a
signed arithmetic operation.

2.2.2.2 Decimal Subtract

As indicated in the Section 2.2.1.2, it is possible to represent numbers as
packed 4-bit BCD numbers. In this case, which is again unique to this
microprocessor, it is possible to make the adder act as though it is a
decimal adder. In this case, the function of the machine is one of correcting
for the subtraction of positive numbers by complementing the number,
setting the carry and performing binary arithmetic with an automatic
correction at the time the result is stored in the accumulator. The unique
capabilities of this adder give the results as shown in the next example.

Example 2.18: Decimal Subtraction

SED Set Decimal Mode
SEC Set Carry Flag
LDA 0100 0100 44
SBC 0010 1001 29
STA 0001 0101 15

By setting the decimal mode and setting the carry flag, one can subtract
number 29 from number 44 with the results in the accumulator
automatically being 15.

As has been indicated, one can perform both addition and subtraction
when the machine is set in decimal mode, treating the bytes to be added
as unsigned, positive, binary coded digits. The carry flag in addition
represents the case when the result in the number exceeded 99 and in
subtraction the absence of the carry flag represents a true borrow
situation.

20

2.2.3 Carry and Overflow During Arithmetic Operations

It is necessary to set or reset the carry flag prior to the beginning of any
arithmetic instruction. Because the carry flag is set or reset as a result of
the arithmetic operation at the end of the loop, one can test the flag to
determine whether or not a carry or a borrow occurred in the operation.
By proper use of the overflow flag one can treat the high order bit of
any set of bytes as a sign bit as long as the results of the negative
numbers are carried in two’s complement form. The microprocessor also
sets the overflow flip-flop to indicate when a result larger than can be
stored in a 7-bit field has occurred and when the resultant sign is
incorrect. In binary arithmetic the carry flag set indicates results in excess
of 256, and in decimal arithmetic indicates results in excess of 99.
Although the input carry is very important to these operations, a simple
rule is: set the carry flag prior to subtract; clear the carry flag prior to
add.

2.2.4 Logical Operands

In implementing a parallel binary adder there are several useful logic
functions which are subsets of a binary add operation. In the MCS650X
family, these subsets are used to implement the logical operands “AND,”
“OR,” and “EOR” (Exclusive Or). These operations are used to test and
control bit manipulations.

2.2.4.1 AND – Memory with Accumulator

The AND instructions transfer the accumulator and memory to the adder
which performs a bit-by-bit AND operation and stores the result back in
the accumulator.

This instruction affects the accumulator; sets the zero flag if the result in
the accumulator is 0, otherwise resets the zero flag; sets the negative
flag if the result in the accumulator has bit 7 on, otherwise resets the
negative flag.

This is symbolically represented by A ɅɅɅɅ M → A.

21

AND is a “Group One” instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses for the AND operation is that of resetting a bit in memory.
In the example below.

Example 2.19: Clearing a bit with AND

LDA 1100 X111, where X is 0 or 1
AND 1111 0111
STA 1100 0111

A byte is loaded into the accumulator and the AND instruction resets the
accumulator bit 3 to 0. The accumulator is then stored back into memory,
thereby resetting the bit.

2.2.4.2 ORA “OR” Memory with Accumulator

The ORA instruction transfers the memory and the accumulator to the
adder which performs a binary “OR” on a bit-by-bit basis and stores the
result in the accumulator.

This is indicated symbolically by A ∨∨∨∨ M → A.

This instruction affects the accumulator; sets the zero flag if the result in
the accumulator is 0, otherwise resets the zero flag; sets the negative flag
if the result in the accumulator has bit 7 on, otherwise resets the negative
flag. ORA is a “Group One” instruction. It has the addressing modes
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

To set a bit, the OR instruction is used as shown below:

Example 2.20: Setting a bit with OR

LDA 1110 X111, where X is 0 or 1
ORA 0000 1000
STA 1110 1111

2.2.4.3 EOR – “Exclusive OR” Memory with Accumulator

The EOR instruction transfers the memory and the accumulator to the
adder which performs a binary “EXCLUSIVE OR” on a bit-by-bit basis
and stores the result in the accumulator.

22

This is indicated symbolically by A ⊻⊻⊻⊻ M → A.

This instruction affects the accumulator; sets the zero flag if the result in
the accumulator is 0, otherwise resets the zero flag; sets the negative flag
if the result in the accumulator has bit 7 on, otherwise resets the negative
flag.

EOR is a “Group One” instruction having addressing modes of Immediate;
Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed
Indirect; and Indirect Indexed.

One of the uses of the EOR instruction is in complementing bytes. This is
accomplished below by exclusive ORAing the byte with all 1’s.

Example 2.21: Complementing a byte with EOR

LDA 1010 1111
EOR 1111 1111
STA 0101 0000

23

CHAPTER 3

CONCEPTS OF FLAGS AND STATUS REGISTER

One can view each of the individual flags or status bits in the machine as

individual flip-flops. The carry flag can be considered the ninth bit of an

arithmetic operation. The decimal mode flag is set and cleared by the

user and used by the microprocessor to select either binary or decimal

mode. For programming convenience the microprocessor treats all of the

flags or status bits as component bits of a single 8-bit register. In Figure

3.1 the processor status register (or “P” register) is added to the block

diagram.

Partial Block Diagram of MCS650X including P Register

FIGURE 3.1

24

Each of the individual flags or bits has its own particular meaning in the
microprocessor as defined in Figure 3.2.

Processor Status Register

FIGURE 3.2

3.0 CARRY FLAG (C)

The carry bit which is modified as a result of specific arithmetic operations

or by a set or clear carry command has been discussed previously. In the

case of shift and rotate instruction, the carry bit is used as a ninth bit as

it is in the arithmetic operation. The carry flag can be set or reset by the

programmer. A SEC instruction will set and a CLC instruction will reset the

carry flag. Operations which affect the carry are ADC, ASL, CLC, CMP,

CPX, CPY, LSR, PLP, ROL, RTI, SBC, SEC.

3.0.1 SEC – Set Carry Flag

This instruction initializes the carry flag to a 1. This operation should
normally precede a SBC loop. It is also useful when used with a ROL
instruction to initialize a bit in memory to a 1.

This instruction affects no registers in the microprocessor and no flags
other than the carry flag which is set.

SEC is a single-byte instruction and its addressing mode is Implied.

25

3.0.2 CLC – Clear Carry Flag

This instruction initializes the carry flag to a 0. This operation should

normally precede an ADC loop. It is also useful when used with a ROL

instruction to clear a bit in memory.

This instruction affects no registers in the microprocessor and no flags

other than the carry flag which is reset.

CLC is a single-byte instruction and its addressing mode is Implied.

3.1 ZERO FLAG (Z)

This flag is automatically set by the microprocessor during any data

movement or calculation operation when the 8 bits of results of the

operation are 0. Therefore, the bit is on (“1”) when the results are 0, and

off “0”, when the results are not equal to 0. The feature of the machine

is similar to that of the PDP11 in the sense that operations which are

decrementing index registers or memory locations have a built-in test for

0 as a result of decrementing to the 0 condition. It is also possible to test

for 0 condition immediately following load and other logical operations,

as opposed to processors which have to do a test and branch instruction.

The Z flag is not directly settable or resettable by an instruction but is

affected by the following instructions: ADC, AND, ASL, BIT, CMP, CPY,

CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,

PLP, ROL, RTI, SBC, TAX, TAY, TXA, TYA.

3.2 INTERRUPT DISABLE (I)

The interrupt disable is a flip-flop made use of by the programmer and
by the microprocessor to control the operations of the interrupt request
pin. A more detailed discussion of the effects of the interrupt disable are
given in the discussion under interrupt control. However, the purpose of
the interrupt disable is to disable the effects of the interrupt request pin.
The interrupt disable, I, is set by the microprocessor during reset and
interrupt commands. The I bit is reset by the CLI instruction or the PLP
instruction, or at a return from interrupt in which the interrupt disable was
reset prior to the interrupt. The interrupt flag may be set by the
programmer using a SEI instruction and is cleared by the programmer by

26

using a CLI instruction. Instructions which affect the interrupt disable are
BRK, CLI, PLP, RTI and SEI.

3.2.1 SEI – Set Interrupt Disable

This instruction initializes the interrupt disable to a 1. It is used to mask
interrupt requests during system reset operations and during interrupt
commands.

It affects no registers in the microprocessor and no flags other than the
interrupt disable which is set.

SEI is a single-byte instruction and its addressing mode is Implied.

3.2.2 CLI – Clear Interrupt Disable

This instruction initializes the interrupt disable to a 0. This allows the
microprocessor to receive interrupts.

It affects no registers in the microprocessor and no flags other than the
interrupt disable which is cleared.

CLI is a single-byte instruction and its addressing mode is Implied.

3.3 DECIMAL MODE FLAG (D)

As discussed, the use of the decimal mode flag is to control whether or
not the adder operates as a straight binary adder for add and subtract
instructions or as a decimal adder for add and subtract instructions. The
SED instruction sets the flag and the CLD instruction resets it. The only
instructions which affect the decimal mode flag are CLD, PLP, RTI and
SED.

3.3.1 SED – Set Decimal Mode

This instruction sets the decimal mode flag D to a 1. This makes all
subsequent ADC and SBC instructions operate as a decimal arithmetic
operation.

SED affects no registers in the microprocessor and no flags other than the
decimal mode which is set to a 1.

27

3.3.2 CLD – Clear Decimal Mode

This instruction sets the decimal mode flag to a 0. This causes all

subsequent ADC and SBC instructions to operate as simple binary

operations.

CLD affects no registers in the microprocessor and no flags other than the

decimal mode flag which is set to a 0.

3.4 BREAK COMMAND (B)

The break command flag is set only by the microprocessor and is used to

determine during an interrupt service sequence whether or not the

interrupt was caused by BRK command or by a real interrupt. A more

detailed discussion of BRK is in the interrupt section. This bit should be

considered to have meaning only during an analysis of a normal interrupt

sequence. There are no instructions which can set or which reset this bit.

3.5 EXPANSION BIT

The next bit in the flag register is an unused bit. It is most likely that this

bit will appear to be on when one is analyzing the bit pattern in the

processor status register; however, no guarantee as to its state is made

as this bit will be used in expanded versions of the microprocessor.

3.6 OVERFLOW (V)

As discussed in the section on arithmetic operations, if one is to look at the

binary arithmetic operations as signed binary operations, there needs to

be some indication of the fact the result of the arithmetic operation has a

greater value than could be contained in the 7 bits of the result. This bit

is the overflow bit and during ADC and SBC instructions represents a

status of an overflow into the sign position. The user who is not using

signed arithmetic can totally ignore this flag during his programming;

however, this flag has the same meaning as the carry to the user who is

using signed binary numbers. It indicates that a sign correction routine

must be used if this bit is on after an add or subtract using signed numbers.

28

In addition to its use to monitor the validity of the sign bit in ADC and SBC

instructions, the overflow flag in the MCS650X products is dramatically

changed from PDP11 and the MC6800. In those systems the overflow

flag was very carefully controlled so as to allow certain signed branches

for analysis of signed numbers. These branches have been deleted from

the MCS6500 series because of confusion and difficulty often associated

with using them, and so therefore, the overflow flag is applicable only to

the operation of ADC and SBC, and then only when using signed numbers.

However, in order to maximize the effectiveness of this testable flag the

BIT instruction which may be used to sample interface devices, allows the

overflow flag to reflect the condition of bit 6 in the sampled field. During

a BIT instruction the overflow flag is set equal to the content of the bit 6

on the data tested with BIT instruction. When used in this mode, the

overflow has nothing to do with signed arithmetic but is just another sense

bit for the microprocessor. Instructions which affect the V flag are ADC,

BIT, CLV, PLP, RTI and SBC. On certain versions of the microprocessor the

V bit will also be available for stimulus from the outside world.

3.6.1 CLV – Clear Overflow Flag

This instruction clears the overflow flag to a 0. This command is used in

conjunction with the set overflow pin which can change the state of the

overflow flag with an external signal.

CLV affects no registers in the microprocessor and no flags other than the

overflow flag which is set to a 0.

3.6.2 Determination of Overflow

To briefly recap the concept of overflow detection, one must understand

that the machine signals an overflow based on the data entered to the

operation and the final result. Since, with signed arithmetic, the range of

numbers that can be represented is +127 to –128, the overflow flag will

never set when numbers of opposite sign are added, since their result will

never exceed that range. The machine deals with this by recognizing that

for any 2 positive numbers, the “bit 7” of each is a “0” and that for any

29

arithmetic operation yielding a result less than or equal to +127, the

resultant “bit 7” must be a “0.” If it is a 1, the overflow flag is set.

Similarly, when two negative numbers are added, the “bit 7” of each is

a “1” and for any result yielding a value less than or equal to –128,

the resultant “bit” must be a “1.” If it is a 0, the overflow flag is set.

Therefore, the machine recognizes by knowledge of the “bit 7” of each

of the numbers to be added what the resultant “bit 7” must be in a non-

overflow situation. If these conditions are not met, the overflow flag

goes set.

3. 7 NEGATIVE FLAG (N)

As already discussed, one of the uses of the microprocessor is to perform

arithmetic operations on signed numbers. To allow the user to readily

sample the status of the sign bit (bit 7), the N flag is set equal to bit 7 of

the resulting value in all data movement and data arithmetic. This means,

for instance, after a signed add one can determine the sign of the result

by sampling the N flag directly rather than finding a way to isolate bit

7. Although signs were the primary purpose for which the N flag was

intended, its usefulness far exceeds that of strictly a sign bit.

Because of every operation including simple moves and add operations

the N bit is equal to the status of bit 7 as a result of the operation; its

primary use becomes that of an easily testable bit. Almost all single-bit

instructions, all interrupts and all I/O status flags use bit 7 as a sense bit.

This allows the user to perform some type of memory access operation

such as Load A followed by immediate conditional branch based on the

status of bit 7 as reflected in the N flag. Like the Z bit, this flag is not

settable or controllable by the programmer and represents the status of

the last data movement operation. Instructions which affect the negative

flag are ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC,

INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, SBC, TAX, TAY, TSX,

TXA and TYA.

30

3.8 FLAG SUMMARY

To summarize, the microprocessor treats a series of flags or status bits as

a single register called the “P” or “Program Status” register.

Some of these flags are controllable only by the programmer (such as

the D flag); others are controllable by both the user program and

microprocessor (such as the interrupt disable flag). Some of them are set

and reset by almost every processor operation, such as the N and Z flags.

Each of these flags has its own meaning to the programmer at a particular

point in time. When combined with the concept of conditional branches,

they represent a powerful test and jump capability not normally found in

a machine of this magnitude. Other than perhaps the carry flag which is

used as part of the arithmetic instructions, the flags by themselves have

relatively little meaning unless one has the ability to test them. For this

purpose there is a series of conditional branch instructions designed into

the machine.

31

CHAPTER 4

TEST, BRANCH AND JUMP INSTRUCTIONS

4.0 CONCEPTS OF PROGRAM SEQUENCE

In all the discussions up until now, there has been little discussion about
how the microprocessor understands the instructions used to perform
various arithmetic and accumulator manipulations. However, it is
appropriate that the concept of a program and how the microprocessor
determines each instruction be developed. More registers are required
in the machine as shown in the figure below.

Partial Block Diagram of MCS650X Including Program
Counter and Internal Address Bus

FIGURE 4.1

32

Although two 8 bit registers have been added, they are the only registers

in the machine that act as though they are one 16 bit register. They

implement a concept known as program count or program sequence and

subsequently their value will be referred to as PC or program count. In

certain operations it may be convenient to talk about how one affects the

program count low (PCL) which will be the lower 8 bit register or the

program count high (PCH) which will be the higher 8 bit register. The

reason for this register being 16 bits in length is that if it had only 8 bits

it would only be able to reference 256 locations. Since it is through the

address bus that one accesses memory, the program counter which

defines the addressable location, should be as wide a word as possible.

The accessing of a memory location is called “addressing”. It is the

selection of a particular eight-bit data word (byte) out of the 65,536

possibilities for memory data locations. This selection is transmitted to the

memory through the 16 address lines (ADH, ADL) of the microprocessor.

For a more detailed discussion of how an individual memory byte is

selected by the address lines, the reader is referred to Chapter 1 of the

Hardware Manual.

If the program counter was only 1 byte and if the bit pattern which allows

the microprocessor to choose which instruction it wants to act on next, such

as “LDA” as opposed to an “AND”, was contained in one byte of data

we could only have 256 program steps. Although the machine of this

length might make an interesting toy, it would have no real practical

value. Therefore, almost all of the competitive 8 bit microprocessors have

chosen to go to a double length program counter. Even though some of

the microprocessors of the MCS650X family do not have all of the output

address lines necessary to allow the user to address 65K bytes of

program (due to package pinout constraints), in all cases the program

counter is capable of addressing a full 65K by virtue of its 16 bit length.

33

4.0.1 Use of Program Counter to Fetch an Instruction

The microprocessor contains an internal timing and state control counter.

This counter, along with a decode matrix, governs the operation of the

microprocessor on each clock cycle. When the state of the microprocessor

indicates that a new instruction is needed, the program counter (program

address pointer) is used to choose (address) the next memory location

and the value which the memory sends back is decoded in order to

determine what operation the MCS650X is going to perform next.

To use the program counter to perform this operation correctly, it must

always be addressing the operation the user wants to perform next. This

operation may be an instruction or may be data on which the instruction

will operate.

In the MCS650X family, the program counter is set with the value of the

address of an instruction. The microprocessor then puts the value of the

program counter onto the address bus, transferring the 8 bits of data at

that memory address into the instruction decode. The program counter

then automatically increments by one and the microprocessor fetches

further data for address operation necessary to complete the instruction.

In the simple example below,

Example 4.1: Accessing Instructions with the P Counter Value

 P Counter* Location Contents

 0100** LDA *Program Counter

 0101 ADC **Hexadecimal

 0102 STA Notation

one can see how the program counter is used to access the instruction

sequence load A, add with carry, and store the result. In this example,

the program counter would start out containing 0100. The microprocessor

would read location 0100 by using the program counter to access

memory and would then interpret and implement the LDA instruction as

previously described. The program counter will automatically increment

by one on each instruction fetch, stepping to 0101. After performing the

LDA, the microprocessor would fetch the next instruction addressing

34

memory with the program counter. This would pick up the ADC instruction,

the add would then be performed, the program counter which has been

incremented to 0102 would be used to address the next instruction, STA.

The P counter incrementing once with each instruction is an oversimplified

view of what actually transpires within the microprocessor.

The MCS650X processors usually require more than one byte to correctly

interpret an instruction. The first byte of an instruction is called the OP

CODE and is coded to contain the basic operation such as LDA (load

accumulator with memory) and also the data necessary to allow the

microprocessor to interpret the address of the data on which the

operation will occur. In most cases, this address will appear in memory

right after the OP CODE byte: This allows the microprocessor to use the

program counter to access the address as well as the OP CODE.

The following example shows how the program counter picks up the

instruction and the address of data located at address 5155.

Example 4.2: Accessing Data Address With P Counter Value

 P Counter Location Contents

 0100 LDA

 0101 55

 0102 51

 0103 Next Instruction

The OP CODE appears in Location Address 0100. The code for the 55

would appear next in Location Address 0101 and the 51 would appear

in Location Address 0102, and the OP CODE for the next instruction

appears in Location Address 0103. In this example, we see that the

program counter is used not only to pick up the operation code, LDA, but

is also used to pick up the address of the memory location from which the

LDA is going to obtain its data. In this case, the program counter

automatically is incremented three times to pick up the full instruction with

the microprocessor interpreting each of the individual fetches as the

35

appropriate data. In other words, the first fetch is used to pick up the OP

CODE, LDA, the second fetch is used to pick up the low order address

byte of the data and the third fetch is used to pick up the high order

address byte of the data. This is the form in which many of the

microprocessor instructions will appear as it is the most simple form of

addressing in the machine and allows referencing to any memory

location.

Assuming that the microprocessor has the ability to start the program

counter at a known instruction, it should be fairly obvious that the program

counter would then continue to advance from that location up to the

maximum memory location, roll over to the least memory location and

continue incrementing through the memory, fetching instructions and

addresses as it went. This would give us an interesting sequential program

but one which lacked one tremendously powerful concept. The program

would have no ability to perform tests or implement various options

based on the results of those tests.

In the previous section, the concept of flags which are set as a result of

the microprocessor operations was developed.

To use these flags, the program should be able to test them and then

change the sequence of operations which are being performed

depending on the result of the test. The program counter is going to

continually put out an address, the microprocessor is going to fetch the

instruction stored at that address and perform operations based on that

instruction. In order to change a sequence of performed instructions by

the microprocessor, the programmer must change the value in the

program counter. Therefore, test instructions are incorporated which may

result in a change of program count sequence as a result of performing

one of the tests. The simplest way to change program sequence is to

substitute a new value into the program counter location. In the MCS650X

microprocessors the simplest way to change the program count sequence

is with a JMP instruction.

36

4.0.2 JMP – Jump to New Location

In this instruction, the data from the memory location located in the
program sequence after the OP CODE is loaded into the low order byte
of the program counter (PCL) and the data from the next memory location
after that is loaded into the high order byte of the program counter
(PCH).

The symbolic notation for jump is (PC + 1)→PCL, (PC + 2)→PCH.

As stated earlier, the “()” means “contents of” a memory location. PC
indicates the contents of the program counter at the time the OP CODE is
fetched. Therefore (PC + 2)→PCH reads, “the contents of the program
counter two locations beyond the OP CODE fetch location are transferred
to the new PC high order byte.”

The addressing modes are Absolute and Absolute Indirect.

The JMP instruction affects no flags and only PCL and PCH.

The JMP instruction allows use of the program counter to access the new
program counter value as illustrated by the following example:

Example 4.3: Use of JMP Instruction (Absolute Addressing Mode)

 Address Data Comments
 0100 JMP Jump to Location 3625
 0101 25 (New PCL byte)
 0102 36 (New PCH byte)
 3625 OP CODE Next Instruction

The program counter in the example starts out at location 100. The
microprocessor loads a jump instruction. The program counter
automatically increments to 101 where the microprocessor picks up and
temporarily stores the 25. The program counter automatically increments
to 102 where the microprocessor picks up the 36.

The 3625 is substituted into the program counter and is used to address
the next instruction. Therefore, the JMP instruction contains within its
address the new program counter location.

Although the jump allows the change of program sequence, it does so
without performing any test. So it is a jump instruction that is employed
when it is desired to change the program counter no matter what
conditions have occurred.

37

Another JMP addressing Mode is the Indirect Addressing Mode.

Before this technique can be understood, the basis of indirect addressing
found in Chapter 6 must be reviewed. The JMP Indirect instruction is
detailed in Chapter 9, page 141.

4.1 BRANCHING

To allow for conditional program sequence change, there are a series of
branch instructions which test and perform optional changes of the
program counter based on the status of the flags. To perform a
conditional change of sequence, the microprocessor must interpret the
instruction, test the value of a flag, and then change the P counter if the
value agrees with the instruction. If the condition is not met, the program
counter continues to increment in its normal fashion. Figure 4.2 illustrates
how a conditional test might be used.

Use of Conditional Test

FIGURE 4.2

38

In this example, it is seen that generation of a carry from the add

operation will allow an out-of-sequence branch to a new location.

4.1.1 Basic Concept of Relative Addressing

If one considers that the instruction JMP required three bytes, one for OP

CODE, one for new program counter low (PCL) and one for new program

counter high (PCH) it is seen that jump on carry set would also require

three bytes. Because most programs for control require many continual

jumps or branches, the MCS650X uses “relative” addressing for all

conditional test instructions. To perform any branch, the program counter

must be changed. In relative addressing, however, we add the value in

the memory location following the OP CODE to the program counter. This

allows us to specify a new program counter location with only two bytes,

one for the OP CODE and one for the value to be added.

To illustrate this, in the following example, the branch on carry set (BCS)

illustration is followed by a value of 50. If the carry is set, the new

program location would be 108 + 50 = 158; in other words, it will take

the branch.

Example 4.4: Illustration of “Branch on Carry Set”

 Address Data Comments

 0100 LDA Load First Value

 0101 ADL1 First Number, low byte

 0102 ADH1 First Number, high byte

 0103 ADC Add Second Value

 0104 ADL2 Second Number, low byte

 0105 ADH2 Second Number, high byte

 0106 BCS Test for Carry Set. If yes,

 branch to 0158

 0107 +50

 0108 STA If not, store results of add

 0109 ADL3 Result, low byte

 010A ADH3 Result, high byte

 0158 OP CODE New Instruction

39

The 0108 represent the value of the program counter after reading the

offset value. The program counter automatically increments so it can

reference the next memory location on the next cycle. The add of the

offset is a signed binary add as discussed in the arithmetic section. A

positive branch is indicated by a 0 in bit 7 of the relative value, and a

minus branch is in two's complement form and is indicated by a 1 in bit 7.

The inherent capabilities of this type of notation system allow branch

conditionally forward 127 bytes from the next instruction and back 128

bytes from that instruction. All branches in the MCS650X series are

conditional relative branches and all have the form shown above. The

advantage of relative addressing is best shown in the following example:

Example 4.5: Sequencing Two Branch Instructions

 Address Data Comments

 0100 LDA Load First Value

 0101 ADL1

 0102 ADH1

 0103 ADC Add Second Value

 0104 ADL2

 0105 ADH2

 0106 BCS Test for Carry Set. If

 yes, branch to 0158

 0107 +50

 0108 BMI Test for Minus Number.

 If yes, branch to 0095

 0109 –75

 010A STA If not, Store

 010B ADL3

 010C ADH3

In this example, the previous single-branch example was modified to also

test the resulting number to see if it is negative. In sequencing two-branch

instructions, this loop is 2 bytes shorter by use of relative branches rather

than 3 byte branches.

40

4.1.2 Branch Instructions

4.1.2.1 BMI – Branch on Result Minus

This instruction takes the conditional branch if the N bit is set.

BMI does not affect any of the flags or any other part of the machine
other than the program counter and then only if the N bit is on.

The mode of addressing for BMI is Relative.

4.1.2.2 BPL – Branch on Result Plus

This instruction is the complementary branch to branch on result minus. It is

a conditional branch which takes the branch when the N bit is reset (0).

BPL is used to test if the previous result bit 7 was off (0) and branch on

result minus is used to determine if the previous result was minus or bit 7

was on (1).

The instruction affects no flags or other registers other than the P counter

and only affects the P counter when the N bit is reset.

The addressing mode is Relative.

4.1.2.3 BCC – Branch on Carry Clear

This instruction tests the state of the carry bit and takes a conditional
branch if the carry bit is reset.

It affects no flags or registers other than the program counter and then
only if the C flag is not on.

The addressing mode is Relative.

4.1.2.4 BCS – Branch on Carry Set

This instruction takes the conditional branch if the carry flag is on.

BCS does not affect any of the flags or registers except for the program
counter and only then if the carry flag is on.

The addressing mode is Relative.

41

4.1.2.5 BEQ – Branch on Result Zero

This instruction could also be called “Branch on Equal.”

It takes a conditional branch whenever the Z flag is on or the previous
result is equal to 0.

BEQ does not affect any of the flags or registers other than the program
counter and only then when the Z flag is set.

The addressing mode is Relative.

4.1.2.6 BNE – Branch on Result Not Zero

This instruction could also be called “Branch on Not Equal.”

It tests the Z flag and takes the conditional branch if the Z flag is not on,
indicating that the previous result was not zero.

BNE does not affect any of the flags or registers other than the program
counter and only then if the Z flag is reset.

The addressing mode is Relative.

4.1.2.7 BVS – Branch on Overflow Set

This instruction tests the V flag and takes the conditional branch if V is on.

BVS does not affect any flags or registers other than the program counter
and only when the overflow flag is set.

The addressing mode is Relative.

4.1.2.8 BVC – Branch on Overflow Clear

This instruction tests the status of the V flag and takes the conditional
branch if the flag is not set.

BVC does not affect any of the flags and registers other than the
program counter and only when the overflow flag is reset.

The addressing mode is Relative.

42

4.1.3 Branch Summary

To summarize, the MCS650X branches have two characteristics; each of

them tests the state of a flag and then either accesses the next instruction

in program sequence if the flag is not in the test state or adds the offset

value to the PC value at the OP CODE of the next instruction (PC + 1) to

allow the program to change operations. This allows the programmer the

full ability to make decisions. By writing a sequence of branch instructions,

any combination of conditions of the microprocessor may be determined

and new action taken as a result of the tests.

There are four branch conditions in the MCS6501-5 microprocessors.

These are branch on carry flag, branch of overflow flag, branch on N

flag, and branch on zero flag. Each of the branches has a branch on flag

set (1) or a branch on flag clear (0).

4.1.4 Solution to Branch Out of Range

The branch relative instruction is unlike the jump instruction which can reach

anywhere in memory, since branch relative is limited to +127 or –128

from the current program counter location. Although for many loops and

many tests this is sufficient range, longer programs will occasionally find

it necessary to conditionally branch to a location that is significantly

further away than the branch command will directly reach. This is one of

the uses of complementary branches. If a program should find it

necessary to branch to a location which was significantly further away

than 127, the following solution would facilitate the branch:

43

Example 4.6: Use of JMP to Branch 0ut of Range

 Address Data Comments
 100 LDA Load First Value
 101 ADL1
 102 ADH1
 103 ADC Add Second Value
 104 ADL2
 105 ADH2
 106 BCC Branch, if no carry,
 Ahead 3 (to Point 2)
 107 +3
 108 JMP If carry set, jump to
 location specified by
 ADH4, ADL4
 109 ADL4
 10A ADH4
Point 2 10B BMI Check for minus
 10C Offset
 10D STA
 10E ADL3 If not Minus, Store
 Result
 10F ADH3

In this example, carry set is being checked. In order to accomplish this
when the branch command would have to reach outside of the 128 range,
the use of a complementary branch is required. Instead of doing the
“branch on carry set” to the location, the “branch on carry clear” is utilized
(a complementary instruction) which branches past the jump. If the
complementary branch is not taken, the jump is the “branch on carry set”
function.

This technique of branching past a jump with the complementary branch
is a universal solution to the branch out of range problem.

Another solution is to find a like branch to the same location that is within
range and although this involves two branches to transfer control, it does
save memory locations.

By use of the relative branch less bytes of code are used than if a
conditional jump had been used. However, in large programs, the branch
out of range occurs more frequently. If the user can determine that a
branch will be out of range by inspection, he should use the jump solution
at the time he is writing the code. Otherwise the various assemblers

44

indicate an out of range branch which will require recoding to use the
jump solution.

NOTE: The jump solution causes 5 bytes of code to be substituted for 2
 bytes of branch which in a symbolic assembly may force other
 branches to go out of range. This might cause several
 consecutive reassemblies but this technique will solve the
 problem.

45

4.2 TEST INSTRUCTIONS

Although most of the normal operations of the microprocessor involve

setting of flags, there are specific instructions which are designed only to

set flags for testing with the branch instruction.

4.2.1 CMP – Compare Memory and Accumulator

This instruction subtracts the contents of memory from the contents of the

accumulator.

Its symbolic notation is A – M.

The use of the CMP affects the following flags: Z flag is set on an equal

comparison, reset otherwise; the N flag is set or reset by the result bit 7,

the carry flag is set when the value in memory is less than or equal to the

accumulator, reset when it is greater than the accumulator. The

accumulator is not affected.

It is a “Group One” instruction and therefore has as its addressing modes:

Immediate; Zero Page; Zero Page,X; Absolute; Absolute,X; Absolute,Y;

(Indirect,X); (Indirect),Y.

The purpose of the compare instruction is to allow the user to compare a

value in memory to the accumulator without changing the value of the

accumulator. An example of where this becomes extremely important is

when one is receiving command instructions from an external device. In

this case, an input byte may have several values. Each value can cause

the program to perform a different operation. The only rapid way to

determine the value of the input data is to compare the memory with a

series of constants. It is fairly simple to perform “compare to constant”

operations. By use of the immediate addressing mode which will be

developed later, the following example compares an input to three

values and branches to different locations for each:

46

Example 4.7: Using the CMP instruction

 Data Comments
 LDA Load Value
 ADL Address Low
 ADH Address High
 CMP Compare COUNT 1 to Accumulator
 COUNT 1
 BEQ If Equal, take the branch to OFFSET 1
 OFFSET 1
 CMP Compare COUNT 2 to Accumulator
 COUNT 2
 BEQ If Equal, take the branch to OFFSET 2
 OFFSET 2
 CMP Compare COUNT 3 to Accumulator
 COUNT 3
 BEQ If Equal, take the branch to OFFSET 3
 OFFSET 3
 Next Inst. Otherwise, go to Next Instruction based on
 default value (COUNT 4).

This example shows how to use the default option. A value was compared
against 3 values and if none were equal a fourth, or default value, is
assumed. This is a useful technique for code minimization.

The compare instruction is designed to allow a signed comparison
between 2 values assuming one makes appropriate use of the Z and N
and C flags. In order to give maximum flexibility to the instruction, the
instruction performs an effective subtract between the value in memory
and the value in the accumulator. The reason it is an effective subtract is
that subtraction allows the user to compare equal or less with one
instruction.

The results of a compare are:

 N C Z V
Accumulator < Memory Either Reset Reset Unchanged
Accumulator = Memory Reset Set Set Unchanged
Accumulator > Memory Either Set Reset Unchanged

So, to check if the accumulator is less than memory, the compare is
followed by a BCC; to check if equal to is followed by a BEQ; and to
check if greater it is followed by a BEQ followed by a BCS. Greater than
or equal is checked by BCS.

47

4.2.2 Bit Testing

The comparison instruction is designed for cases when byte or multiple

bytes of values are being compared; however, in the analysis of logic

functions, it is very often necessary to determine the condition of an

individual bit. One of the ways to accomplish this is with the use of the

AND instruction as previously discussed. In other words, the user can load

a value into the accumulator and AND it with a field that contains a one

bit only in the corresponding bit position to the bit under test. By using a

Branch on Zero Flag after the AND, the status of the bit in memory is

testable by this technique. However, the use of this technique involves

destroying the accumulator value with the AND instruction. Therefore,

searching a table looking for a single bit in a given position would

necessitate the reloading of the test value (mask) after each AND

instruction.

In order to allow memory sampling without disturbing the accumulator,

the BIT instruction is used.

4.2.2.1 BIT – Test bits in Memory with Accumulator

This instruction performs an AND between a memory location and the

accumulator but does not store the result of the AND into the accumulator.

The symbolic notation is M ɅɅɅɅ A.

The bit instruction affects the N flag with N being set to the value of bit

7 of the memory being tested, the V flag with V being set equal to bit 6

of the memory being tested and Z being set by the result of the AND

operation between the accumulator and the memory if the result is Zero,

Z is reset otherwise. It does not affect the accumulator.

The addressing modes are Zero Page and Absolute.

The BIT instruction actually combines two instructions from the PDP-11 and

MC6800, that of TST (Test Memory) and (BIT Test). This, like the compare

test, allows the examination of an individual bit without disturbing the

value in the accumulator and is illustrated by the example below:

48

Example 4.8: Sample Program Using the BIT Test

 Data Comments
 LDA Load MASK into Accumulator
 MASK
 BIT Test First Memory Value for Mask Bit
 ADL1
 ADH1
 BNE Branch if Set
 +50
 BIT Test Secondary Memory Value for Mask Bit
 ADL2
 ADH2
 BNE Branch if Set
 –75
 Etc.

The value “MASK” loaded into the accumulator in this example is actually

a descriptive title since, this byte is 8 bits, only one of which is a 1. Using

this byte in the AND operation inherent in the BIT test will effectively mask

out all bits in the memory location under test except that bit position

corresponding to the 1 residing in the accumulator. In Example 4.8, the

MASK byte is AND'ed to the data found in location ADH1, ADL1 and if

the bit under test is a 1, the branch will be taken; if not a 1, the second

memory location will be tested with the same mask, etc.

In addition to the non-destructive feature of the bit which allows us to

isolate an individual bit by use of the branch equal or branch not equal

test, two modifications to the PDP-11 version of that instruction have been

made in the MCS650X microprocessor. These are to allow a test of bit 7

and bit 6 of the field examined with the BIT test. This feature is

particularly useful in serving polled interrupts and particularly in dealing

with the MCS6520 (Peripheral Interface Device). This device has an

interrupt sense bit in bit 6 and bit 7 of the status words. It is a standard

of the M6800 bus that whenever possible, bit 7 reflects the interrupt

status of an I/O device. This means that under normal circumstances, an

analysis of the N flag after a load or BIT instruction should indicate the

status of the bit 7 on the I/O device being sampled. To facilitate this test

using the Bit instruction, bit 7 from the memory being tested is set into the

49

N flag irrespective of the value in the accumulator. This is different from

the bit instruction in the M6800 which requires that bit 7 also be set on

the accumulator to set N. The advantage to the user is that if he decides

to test bit 7 in the memory, it is done directly by sampling the N bit with

a Bit followed by branch minus or branch plus instruction. This means that

I/O sampling can be accomplished at any time during the operation of

instructions irrespective of the value preloaded in the accumulator.

Another feature of the BIT test is the setting of bit 6 into the V flag. As

indicated previously, the V flag is normally reserved for overflow into the

sign position during an add and subtract instruction. In other words, the V

flag is not disturbed by normal instructions. When the BIT instruction is

used, it is assumed that the user is trying to examine the memory that he

is testing with the BIT instruction. In order to receive maximum value from

a BIT instruction, bit 6 from the memory being tested 1s set into the V

flag. In the case of a normal memory operation, this just means that the

user should organize his memory such that both of his flags to be tested

are in either bit 6 or bit 7, in which case an appropriate mask does not

have to be loaded into the accumulator prior to implementing the BIT

instruction. In the case of the MCS6520, the BIT instruction can be used

for sampling interrupt, irrespective of the mask. This allows the

programmer to totally interrogate both bit 6 and bit 7 of the MCS6520

without disturbing the accumulator. In the case of the concurrent interrupts,

i.e., bit 6 and bit 7 both on, the fact that the V flag is automatically set

by the BIT instruction allows the user to postpone testing for the “6th bit

on” until after he has totally handled the interrupt “for bit 7 on” unless he

performs an arithmetic operation subsequent to the BIT operation.

50

CHAPTER 5

NON-INDEXING ADDRESSING TECHNIQUES

5.0 ADDRESSING TECHNIQUES

The addressing modes of the MCS6500 family can be grouped into two
major categories: Indexed and Non-Indexed Addressing. This section
deals with the Non-Indexed mode of addressing. Before detailing the
various modes available to the user, several concepts will be reviewed.
The first of these is the concept of memory field, address bus and data
bus. Then a brief introduction to two non-indexed addressing modes and
timing will be made with the intent of preparing the reader for a
discussion of program sequence and the internal activity of the
microprocessor during execution of an instruction. This will be followed by
a review of how one treats memory and the assorted allocation of
memory space to the elements of RAM, ROM and I/O.

Subsequent to reading this section the user should have an understanding
of the following fundamentals:

 a) Memory Field
 b) Address Bus
 c) Data Bus
 d) Cycle Timing
 e) Program Sequence
 f) Pipelining

With these tools in hand, the reader will be better prepared to readily
comprehend the detailed definitions of the non-indexed addressing
modes.

As discussed in Section 1.1 the MCS650X microprocessor family is
organized around a 16-bit address function. All locations are accessed
by a 16-bit word, even though in the case of the MCS6503, the
MCS6504, and the MCS6505, only 11 or 12 bits are actually utilized.

51

Sixteen bits of address allow access to 65,536 memory locations, each

of which, in the MCS650X family, consists of 8 bits of data. Figure 5.1

displays the total memory field and incorporates the concept of address

bus and data bus. The memory address can be regarded as 256 pages

(each page defined by the high order byte) of 256 memory locations

(bytes) per page. It will be seen in the detailed discussion of addressing

that the lowest order page, page zero, has special significance in the

minimization of program code and execution time.

Much of the uniqueness of the MCS6500 product family has to do with

how the 16-bit address is created. The simplest way to create a 16-bit

address is for the programmer to indicate to the microprocessor the 16

bits necessary to access a particular operand on which the microprocessor

is expected to operate. An instruction consists of 1, 2, or 3 bytes. It always

takes 1 byte to specify the operation which is to be performed (OP

CODE). This OP CODE is then followed by 0, 1, or 2 bytes of address

depending on the specific operation involved. In the case of the simple

instructions such as transfer accumulator to X, operations are performed

internally and, therefore, no additional bytes are necessary. This

instruction mode is known as “Implied” in the sense that the instruction

contains both the OP CODE and the source and destination for the

operation. This is the simplest form of addressing and applies to only a

limited number of the instructions available in the MCS6500 family.

Another form of addressing, absolute addressing, is the case when the

programmer specifies directly to the microprocessor the address he wants

the microprocessor to use in fetching the memory value on which the

operation will occur. This form is illustrated by the example below.

Example 5.1: Using absolute addressing

Clock Cycle Address Bus Data Bus

1 0100 LDA, Absolute

2 0101 ADL

3 0102 ADH

4 ADH, ADL DATA

In this example, memory location 0100 contains the OP CODE “LDA
Absolute.” The next location, 0101, contains ADL which will be defined as

52

the “low order byte of the address,” hence address low (ADL). Location
0102 contains ADH – the “high order byte of the address,” hence address
high, (ADH). At the next clock cycle, the 16 bits composed of ADH and
ADL are put on the address bus with the location defined by ADH, ADL
containing the data to be loaded into the accumulator. The effective
address of the data is best described in Figure 5.1, where the 16-bit
address (AB00 through AB15) is composed of ADH and ADL.

This is the normal form for an absolute memory address. The first byte of

the instruction which is picked up by the program counter is the operation

code. This is interpreted by the microprocessor as “Load A – Absolute.”

At the same time that this Load A is being interpreted by the

microprocessor, the microprocessor accesses the next memory location by

putting the program counter content, which was incremented as the OP

CODE was fetched, on the address bus.

5.1 CONCEPTS OF PIPELINING AND PROGRAM SEQUENCE

The overlap of fetching the next memory location while interpreting the

current data from memory minimizes the operation time of a normal 2 or

3-byte instruction and is referred to as pipelining. It is this feature that

allows a 2-byte instruction to only take 2 clock times and a 3-byte

instruction to be interpreted in 3 clock cycles.

In the MCS650X microprocessors, a clock cycle is defined as 1 complete

operation of each of the 2 phase clocks. Figure 5.2 is a sketch of the

address and data bus timing as it relates to the system clocks.

The major point to be noted is that every clock cycle in the MCS650X

microprocessor is a memory cycle in which memory is either read or

written. Simultaneously with the read or write of memory, an internal

operation of the microprocessor is also occurring.

53

5.1

54

Example of Timing – MCS650X Family

FIGURE 5.2

The following example will let us analyze this effect:

Example 5.2: Demonstration of “Pipelining” effect

Clock
Cycles External Operation Address Data Internal Operation

1 Fetch OP CODE 100 ADC Increment P-counter to
101

2 Fetch first-address
half from memory

101 ADL Increment P-counter to
102, interpret ADC
instruction

3 Fetch second-address
half from memory

102 ADH Increment P-counter to
103, hold ADL

4 Fetch operand from
memory

ADH,
ADL

DATA Load DATA

5 Fetch next OP CODE
from memory

103 STA Increment P-counter to
104, perform ADC
operation
A + M + C

6 Fetch address from
memory

104 ADL Increment P-counter to
105, result of add →
accumulator, interpret
STA instruction

The above example shows the operation of an ADC, add with carry
instruction, using absolute addressing. In the first cycle, the OP CODE is
fetched from memory addressed by the P-counter. To implement the look-

55

ahead or pipeline in cycle two, the fetch of ADL address low is done
simultaneously with the interpretation of the ADC absolute instruction. By
the end of cycle 2, the microprocessor knows that it should access the next
memory location for the address high as a result of interpretation of the
absolute addressing mode.

The address low (ADL) is stored in the ALU while the address high (ADH)

is being fetched in cycle 3.

On the fourth cycle, no internal operation is necessary while the

microprocessor is putting the calculated value onto the address bus.

However, during this cycle, the operand is loaded into the microprocessor.

The 4 cycles have all been involved with memory access for the ADC,

absolute instruction. The first to fetch the instruction, the second to fetch

the address low, the third to fetch the address high and the fourth to use

the calculated address to fetch the operand. Because that completes the

memory operations for this instruction, during the fifth cycle the

microprocessor starts to fetch the next instruction from memory while it is

completing the add operation from the first instruction. During the sixth

cycle, the microprocessor is interpreting the new instruction fetched during

cycle 5 while transferring the result of the add operation to the

accumulator. This means that even though it really takes 6 cycles for the

microprocessor to do the ADC instruction, the programmer only need

concern himself with the first 4 cycles as the next 2 are overlapped as

shown.

All instructions take at least 2 cycles; one to fetch the OP CODE and 1 to

interpret the OP CODE and, with few exceptions, the number of cycles

that an instruction takes is equal to the number of times that memory must

be addressed.

The details of how each addressing mode is overlapped are described

in the individual sections and for specific details of each cycle in various

operations, the user is referred to the Hardware Manual, Appendix A.

56

5.2 MEMORY UTILIZATION

As indicated, the 16-bit address allows the user to access greater than

65,000 separate locations. Most of the locations which will be accessed

in the course of a control problem will be in program or P-counter

referenced locations. A typical program will probably range from 1000

to 8000 bytes and will normally be implemented in fixed ROM or non-

volatile alterable ROM.

A second type of memory will be the read-write memory in which the user

keeps data such as working values, input and output data. Depending on

the type of problem being addressed, this RAM usually ranges from 32

bytes to 8000 bytes, although most applications will be under 2000

bytes of RAM.

It would seem there is significant address space not used in most

applications. To get the maximum benefit of the addressing space, 2

concepts are implemented in the MCS6500 family. These are the use of

data addressing as I/O control and distributed address connections for

minimum control lines. The latter concept utilizes the address bus, which is

basic too and therefore pervasive in any microcomputer system, as a

controlling network whenever possible. An example of this is the use of

the address bus in selecting devices to interface with the microprocessor.

5.2.1 I/O Control

The advantages of accessing I/O as memory are 1) the use of distributed

address space allows for simple I/O control lines and 2) all of the power

of the instructions is applied to I/O operations. This has the advantage

of minimizing I/O hardware and allows the programmer to be innovative

in the application of I/O devices in solving his problem.

MCS6500 product family I/O devices contain 8-bit registers which are

addressed by the microprocessor as though they were a memory byte. In

the simplest case, the 8-bit register being read contains a 1 and 0's

pattern which corresponds to the TTL voltage level applied to 8 input pins

to the I/O device.

57

If the register was a flip-flop register driving 8 output pins with TTL levels,
the storing of 8 bits of data with a STA instruction into that I/O register
would, in effect, be programming the flip-flop to a specific desired state.
Thus, one can use the instructions with the I/O just as any other memory
location.

5.2.2 Memory Allocation

Figure 5.1 displays the relationship between memory, address bus and
data bus while referencing the address values in hexadecimal notation.
The previous section has dealt with utilization of memory address space
for not only ROM and RAM but for I/O as well. At this time, the concept
of allocation of the memory field of Figure 5.1 to the elements of ROM,
RAM and I/O will be considered. The allocation below satisfies most
applications requirements and represents an optimum allocation for
minimization of programming code and speed.

Hexadecimal Address Suggested Allocation of Memory

0000 – 3FFF RAM
4000 – 7FFF I/O
8000 – FFFF ROM

It should be noted that the 3 memory blocks address definitions which,
while not mandatory or required for proper system operation, do
represent a logical assignment of space. The justification for this
particular allocation will be presented in Section 9.12. In the meantime,
the reader should retain the concept of the various memory blocks
allocated to RAM, I/O and ROM as they are useful in the following
discussion. With an understanding of pipelining and the concept of
memory allocation, the next subject must be: in what manner can data be
accessed from the memory field?

5.3 IMPLIED ADDRESSING

Implied addressing is a single-byte instruction.

The byte contains the OP CODE which stipulates an operation internal to
the microprocessor. Instructions utilizing this type of addressing include
operations which clear and set bits in the P (Processor Status) register,
incrementing and decrementing internal registers and transferring

58

contents of one internal register to another internal register. Operations
of this form take 2 clock cycles to execute. Use first cycle is the OP CODE
fetch and during this fetch, the program counter increments.

In the second cycle, the incremented P-counter is now the address of the

next byte of the instruction. However, since the OP CODE totally defines

the operation, the second memory fetch is worthless and any P-counter

increment in the second cycle is suppressed. During the second cycle, the

OP CODE is decoded with recognition of its single byte operation.

In the third cycle, the microprocessor repeats the same address to fetch

the next OP CODE. This is the second time the memory address is fetched;

once as the second byte of the first instruction and second, as the correct

OP CODE address for the next instruction.

A symbolic representation of a 2-cycle instruction is given below. “PC”

means “Program Counter.”

Example 5.3: Illustration of implied addressing

Instructions which use implied addressing and require only 2 cycles include

CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED, SEI, TAX, TAY,

TSX, TXA, TXS, TYA.

Instructions utilizing implied addressing and which require more than 2

cycles are stack operations which include BRK, PHA, PHP, PLA, PLP, RTI,

RTS.

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 1 New
OP CODE

Ignore New
OP CODE;
Decode Old
OP CODE

3 PC + 1 PC + 2 New
OP CODE

Fetch New
OP CODE;
Execute Old
OP CODE

59

5.4 IMMEDIATE ADDRESSING

Immediate addressing is a 2-byte instruction.

The first byte contains the OP CODE specifying the operation and
address mode. The second byte contains a constant value known to the
programmer. It is often necessary to compare load and/or test against
certain known values. Rather than requiring the user to define and load
constants into some auxiliary RAC, the microprocessor allows the user to
specify values which are known to him by the immediate addressing
mode.

Example 5.4: Illustration of immediate addressing

Immediate addressing is the simplest form of constant manipulation
available to the programmer. It requires a minimum execution time in the
sense that 1 cycle is used in loading the OP CODE and as this CODE is
being interpreted, the constant is being fetched.

Instructions utilizing immediate addressing are ADC, AND, CMP, CPX,
CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

5.5 ABSOLUTE ADDRESSING

Absolute addressing is a 3-byte instruction.

The first byte contains the OP CODE for specifying the operation and
address mode. The second byte contains the low order byte of the
effective address (that address which contains the data), while the third
byte contains the high order byte of the effective address. Thus the
programmer specifies the full 16-bit address and, since any memory
location can be specified, this is considered the most normal mode for
addressing. Other modes may be considered special subsets of this 16-
bit addressing mode.

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 2 DATA Fetch DATA,
Decode OP CODE

3 PC + 2 PC + 3 New
OP CODE

Fetch New
OP CODE;
Execute Old
OP CODE

60

Example 5.5: Illustration of absolute addressing

The basic operation of the microprocessor in an Absolute address mode
is to read the OP CODE in the first cycle while finishing the previous
operation. In the second cycle, the microprocessor automatically reads
the first byte after the OP CODE (in this case the address low) while
interpreting the operation code. At the end of this cycle, the
microprocessor knows that it needs a second byte for program sequence;
therefore, 1 more byte will be accessed using the program counter while
temporarily storing the address low. This occurs during the third cycle. In
the fourth cycle, the operation is one of taking the address low and
address high that were read during cycles 2 and 3 to address the
operand. For example, in load A, the effective address is used to fetch
from memory the data which is going to be loaded in the accumulator. In
the case of storing, data is transferred from the accumulator to the
addressed memory.

As was illustrated in the review of pipelining, depending on the instruction,

it is possible for the microprocessor to start the next instruction fetch cycle

after the effective address operation and independent of how many

more internal cycles it may take to complete the OP CODE. The only

exception to this is the case of “Jump Absolute” in which the address low

and address high that are fetched in cycle 2 and cycle 3 are used as the

16-bit address for the next OP CODE. The jump absolute therefore only

requires 3 cycles. In all other cases, absolute addressing takes 4 cycles,

3 to fetch the full instruction including the effective address, the fourth to

perform the memory transfer called for in the instruction.

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 2 ADL Fetch ADL,
Decode OP CODE

3 PC + 2 PC + 3 ADH Fetch ADH
Hold ADL

4 ADH, ADL PC + 3 DATA Fetch DATA

5 PC + 3 PC + 4 New
OP CODE

Fetch New
OP CODE,
Execute Old
OP CODE

61

Absolute addressing always takes 3 bytes of program memory; 1 for the
OP CODE, 1 for the address low, 1 for the address high, plus 1 byte of
data memory (such as RAM) that is pointed to by the effective address.

Instructions which have absolute addressing capability include ADC, AND,
ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR,
ORA, ROL, SEC, STA, STX, STY.

5.6 ZERO PAGE ADDRESSING

Zero page addressing is a 2-byte instruction. The first byte contains the
OP CODE, while the second byte contains the effective address in page
zero of memory.

As seen in absolute addressing, the ability to address anywhere in the
65K memory space costs 3 bytes of program space, plus a minimum of 4
cycles to perform address operations. In order to allow the user a
shortening of both memory space and execution time, particularly when
dealing with working registers and intermediate values, the MCS650X
microprocessor family has a special addressing mode that assumes
automatically the effective address high (ADH) to be in the lowest page
of memory. In order to understand the page concept one should think of
each of the various memory addresses as comprising a consecutive block
of 256 locations which have an independent high order address
associated with that block. Each block is called a page. Other than for
zero page and for calculating indexed addresses which will be covered
in the following sections, the microprocessor pays little attention to the
page concept.

The microprocessor assumes that the high order byte of the effective
address for instructions which contain OP CODES which indicate the zero
page addressing option is all 0's (ADH = 00, hexadecimal). This allows
the following sequence to occur.

62

Example 5.6: Illustration of zero page addressing

On the first cycle, the microprocessor puts out the program counter, reads
the OP CODE and increments the program counter. On the second cycle,
the microprocessor puts out the program counter, reads the effective
address low, interprets the OP CODE and increments the program
counter. So far, the operations are identical to those described in the
absolute addressing mode. However, by the end of the second cycle, the
microprocessor has decoded the fact that this is a zero page operation
and on the next cycle, it outputs address 00, as the effective address
high, along with the address low that it just fetched and then either reads
or writes memory at that location, depending on the OP CODE.

The advantage of zero page addressing is that it takes only 2 bytes, 1
for the OP CODE and 1 for the effective address low; and only 3 cycles,
1 to fetch the OP CODE, 1 to fetch the address low, and 1 to fetch the
data, as opposed to absolute addressing which takes 3 bytes and 4
cycles.

In order to make most effective utilization of this concept, the user should
organize his memory so that he is keeping his most frequently accessed
RAM values in the memory locations between 0 and 255. If one organizes
the zero page of memory properly, including moving data into these
locations for longer loops, significant shortening of program code and
execution time can be obtained.

The concept of zero page is so important that the various cross assemblers
have error notations which indicate when improper use of this space is
made. If one's coding is organized according to the guidelines shown in
Section 5.2.2, one normally will find working storage located in values
from 0 to 255. This is an important aspect of the discipline known as
“memory management.”

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 2 ADL Fetch ADL,
Decode OP CODE

3 00, ADL PC + 2 DATA Fetch DATA

4 PC + 2 PC + 3 New
OP CODE

Fetch New
OP CODE,
Execute Old
OP CODE

63

Once the pattern of coding for the MCS650X, which considers working
storage or registers in the zero page, becomes a habit, one finds that in
most control applications, all of the working registers will take advantage
of this programming and the associated time reduction without any
special effort on the user’s part.

Instructions which allow zero page addressing include ADC, AND, ASL,
BIT, CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, ROL, SBC,
STA, STX, STY.

5.7 RELATIVE ADDRESSING

As discussed in Section 4.1, all of the branch operations in the
microprocessor use the concept of relative addressing. In example 5.7, it
is seen that for the case of the straightforward branch in which the branch
is not taken, on the first program count cycle, the microprocessor puts out
program counter as an address, fetches the OP CODE and finishes the
previous operation. During the second cycle, the program counter is put
on the address bus, picking up the relative offset. Internally, the
microprocessor is decoding the OP CODE to determine that it is a branch
instruction.

Example 5.7: Illustration of relative addressing branch not taken

This is only the second cycle of an internal operation; therefore, the
microprocessor may be storing a computed value from the previous
instruction at the same time it is finishing interpreting the present
instruction. It is while doing the store operation that the flags in the
machine get physically set; therefore, the microprocessor allows the

Cycle Address Bus Data Bus
External
Operation

Internal
Operation

1 0100 OP CODE Fetch

OP CODE
Finish Previous Operation,
Increment Program
Counter to 0101

2 0101 Offset Fetch
Offset

Interpret Instruction,
Increment Program
Counter to 0102

3 0102 Next
OP CODE

Fetch Next
OP CODE

Check Flags, Increment
Program Counter to
0103

64

program counter to go 1 more cycle to allow itself time to determine the
value of the flags. For example, if the previous instruction is ADC, the
flags will not get set until the cycle in which the offset value is fetched.

During the third cycle, the microprocessor puts the incremented PC onto
the address bus, fetches the next OP CODE and checks the flag in order
to decide whether or not the program counter value that is going out is
correct and that the branch is not going to be taken. Therefore, an
additional type of pipeline, in this case fetching the next OP CODE in a
branch sequence, accomplishes the implementation of a branch relative
with no branch being taken. This requires 2 cycles. One cycle fetches the
branch OP CODE and 1 cycle fetches the next operation, the relative
offset. The second fetch is effectively ignored by virtue of the fact that
the branch is not taken, so the program counter location has already been
incremented and the next OP CODE has already been fetched by the
microprocessor.

If in the above example it is assumed that the flag is set such that the
branch is taken and the relative offset is +50, the microprocessor takes
a third cycle to perform the branch operation.

Example 5.8: Illustration of relative addressing branch positive taken,
 no crossing of page boundaries

In Example 5.8, on the first cycle, a branch OP CODE is fetched while the
previous operation is finished. On the second cycle, the offset is fetched
while the branch instruction is being interpreted. On the third cycle, the
microprocessor uses the adder to add the program count low to the offset
and also checks the flags. Because the program count for the next OP

Cycle Address Bus Data Bus
External
Operation

Internal
Operation

1 0100 OP CODE Fetch

OP CODE
Finish Previous Operation,
Increment Program
Counter to 0101

2 0101 +50 Fetch
Offset

Interpret Instruction,
Increment Program
Counter to 0102

3 0102 Next
OP CODE

Fetch Next
OP CODE

Check Flags, Add
Relative to PCL, Increment
Program Counter to
0103

4 0152 Next
OP CODE

Fetch Next
OP CODE

Transfer Results to
PCL, Increment Program
Counter to 0153

65

CODE in program sequence is already in the program counter and is
being incremented, the microprocessor can allow the incrementation
process to continue. If the value for the next instruction is indicated
because the flag is not set, then the microprocessor loads the next OP
CODE and the add of the program counter low to the offset value, is
ignored as it was in the previous example.

If during the third cycle the flag is found to be the correct value for a

branch, the OP CODE that has been fetched during this cycle is ignored.

The microprocessor then updates the program counter with the results

from the add operation, puts that value out on the address bus which

fetches a new OP CODE.

This gives the effect of a 3-cycle branch. Thus it can be seen that in a

case where the branch is not taken, the microprocessor has an effective

2-cycle branch, i.e., 2 memory references. In the case when the branch is

taken, the branch takes 3 cycles as long as the relative value does not

force an update to the program counter high. In other words, 3 cycles are

required if the page boundary is not crossed (recall the discussion of the

“page” concept in Section 5.0). If in the above example the branch was

back from address 0102 fifty locations, as opposed to +50 locations, the

following result would occur:

Example 5.9: Illustration of relative addressing – branch negative
 taken, crossing of page boundary

Cycle Address Bus Data Bus
External
Operation

Internal
Operation

1 0100 OP CODE Fetch

OP CODE
Finish Previous
Instruction

2 0101 –50 Fetch
Offset

Interpret Instruction

3 0102 Next
OP CODE

Fetch Next
OP CODE

Check Flags, Add
Relative to PCL.

4 01B2 Discarded
DATA

Fetch Discarded
DATA

Store Adder in PCL and
Subtract 1 from PCH

5 00B2 Next
OP CODE

Fetch Next
OP CODE

Put Out New PCH and
Increment PC to 00B3

66

In this example, the adder is used to perform the arithmetic operation,
and the adder can do only the 8 bits of addition at a time. The minus
branch crosses back over the page boundary, therefore an intermediate
result is developed of 01B2 which has no intrinsic value because of the
borrow which now has to be reflected into the program counter high.
Since this example displays both a negative offset and the crossing of a
page boundary, additional explanation is in order.

The value to which the offset will he added is 0102 (hexadecimal). The
offset itself is –50 (hexadecimal).

Subtract low order byte:

 02
HEX = 0000 0010

 50
HEX = 0101 0000

Take two’s compliment of 50:

 50 = 1010 1111
 Add 1 1

 –50 = 1011 0000

 Add 2 0000 0010
 –50 1011 0000

Carry = 0 1011 0010
 B 2

Up to this point, the PCH has not been affected; therefore the value on
the address bus is 01B2.

The Carry = 0, indicating a borrow.

Subtract high order byte:

 01HEX = 0000 0001
 00HEX = 0000 0000

Take two’s compliment of 00:

 00HEX = 1111 1111
 Add Carry = 0

 –00HEX = 1111 1111

 Add 01 0000 0001
 –00 1111 1111

Carry = 1 0000 0000
 0 0

The presence of the Carry indicates no borrow, hence a positive result.

67

At this time, after the arithmetic operation on both bytes of the P.C., the
address bus will be: 00B2.

The microprocessor does put out on the address line the intermediate
results (01B2), thereby reading a location within the page it was currently
working in, the value of which is ignored. It then subtracts 1, or if this was
a branch forward to the next page, the microprocessor would add 1 to
program counter high in this fourth cycle. In the fifth cycle, the
microprocessor will recognize that it has the correct new program counter
high and program counter low and is able to start a new instruction
operation, thereby giving an effective length to the branch operation
when a page crossing is encountered of 4 cycles.

It should be noted that all of the above operations are automatic; once
a branch instruction is encountered, the following relative value is
calculated and put into the memory location after the branch instruction.

We can see, however, that it is possible to control the execution time of
a branch. This is important for counting or estimating times of operations.
For counting purposes, the following applies:

 If a branch is normally not taken, assume 2 cycles for the
 branch.

 If the branch is normally taken but it is not across the page
 boundary, assume 3 cycles for the branch.

 If the branch is over a page boundary, then assume 4 cycles for
 the branch.

In loops which are repeated many times, one can assume some type of
statistical factor between 3 and 2, or 4 and 2, depending on the
probability of taking the branch versus not taking it.

In order to indicate to the programmer when the 4-cycle branch is taken
as opposed to the 3-cycle branch, the various assemblers flag all branch
operations which cross page boundaries with a warning message and if
timing is important, the user can perhaps relocate his program in such a
way that the branch does not cross page boundary.

It should be re-emphasized that other than for timing purposes, page
boundary crossings can be ignored by the programmer.

To summarize, the relative addressing always takes 2 bytes. 1 for the
OP CODE and 1 for the offset.

68

The execution time is as follows:

Branch with Not Taking the Branch – 2 cycles

Branch When the Branch is Taken but
No Page Crossing

– 3 cycles

Branch When the Branch is Taken with
a Page Crossing

– 4 cycles

Only branch instructions have relative addressing. The branch instructions
are: BCC, BEQ, BIT, BMI, BNE, BPL, BSC, BVC, BVS. For a more detailed
explanation of relative offset calculations the reader is referred to
Appendix H.

69

CHAPTER 6

INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

6.0 GENERAL CONCEPT OF INDEXING

In previous sections techniques for using the program counter to address
memory locations after the operation code to develop the address for a
particular operation have been discussed. Other than cases when the
programmer directly changes the program memory, it can be considered
that the addressing modes discussed up until now are fixed or directed
addresses and each has the relative merits discussed under each
individual section. However, a more powerful concept of addressing is
that of computed addressing. There are basically two types of computed
addressing; indexed addressing and indirect addressing.

Indexed addressing uses an address which is computed by means of
modifying the address data accessed by the program counter with an
internal register called an index register.

Indirect addressing uses a computed and stored address which is
accessed by an indirect pointer in the programming sequence.

In the MCS650X product family, both of these modes are used and
combinations of them are available.

Before undertaking the more difficult concepts of indirect addressing the
concept of indexed instructions will be developed.

70

In order to move five bytes of memory from an address contained in
FIELD 1 to another set of addresses, starting with FIELD 2, the following
program could be written:

Example 6.1: Moving Five Bytes of Data with Straight Line Code

LABEL INSTRUCTION OPERAND COMMENTS

START LDA FIELD 1
Move First Value

 STA FIELD 2
 LDA FIELD 1 + 1

Move Second Value
 STA FIELD 2 + 1
 LDA FIELD 1 + 2

Move Third Value
 STA FIELD 2 + 2
 LDA FIELD 1 + 3

Move Fourth Value
 STA FIELD 2 + 3
 LDA FIELD 1 + 4

Move Fifth Value
 STA FIELD 2 + 4

In this example, data is fetched from the first memory location in FIELD 1,
as addressed by the next one or two bytes in program memory, stored
temporarily in A and then written into the first memory location in FIELD
2, also addressed by the next one or two bytes in program memory. This
sequence is repeated, with only the memory addresses changing, until all
the data has been transferred. This type of programming is called
straight line programming because each repetitive operation is a
separate group of instructions listed in sequence or straight line form in
program memory. This is necessary even though the instruction OP CODES
are identical for each memory transfer operation because the specific
memory addresses are different and require a different code to be
written into the program memory for each transfer.

It takes a total of 10 instructions to accomplish the move when it is
implemented this way. It should be noted that it is not indicated whether
or not FIELD 1 and FIELD 2 are Zero Page addresses or Absolute
addresses.

If they were Zero Page addresses, the total number of bytes consumed
in solving the problem would be two bytes for each instruction and
thereby requiring 20 bytes of memory; it both FIELD 1 and FIELD 2 were
Absolute memory locations, each instruction would take 3 bytes and this
program would require 30 bytes of program storage.

71

The Zero Page program would execute in three cycles per instruction or

30 cycles and the Absolute location version would execute in four cycles

per instruction or 40 cycles.

A new concept has been introduced in this example, that of symbolic

notation rather than actual locations for the instructions.

The form that this short program is written in uses symbolic addressing in

which the address of the beginning of the program has a name START.

Symbolic representations of addresses such as “START” are referred to

as labels. The addresses in the two address field used in this example

have also been given names, the first address of the first field is called

FIELD 1; the first address of the second field is called FIELD 2. Each

additional address in the fields has been given a number which is

referenced to the first number; for example, the third byte in FIELD 1 is

FIELD 1 + 2. All of these concepts are implemented to simplify the ease

of writing a program because the user does not have to worry about the

locations of FIELD 1 and FIELD 2 until after analyzing the memory needs

of the whole program. Symbolic notation also results in a more readable

program.

Translation from symbolic form instructions and addresses into actual

numerical OP CODES and addresses is done by a program called a

symbolic assembler. Several different versions of symbolic assemblers

and cross assemblers are available for the MCS650X product family.

Symbolic notation will be used throughout the remainder of this text

because of its ease of understanding and because individual byte

addresses are unnecessary although for an explanation of a particular

mode, the byte representation may be used.

In this example, only direct addresses were used. A program to reduce

the number of bytes required to move the five values follows:

72

Flow Chart – Moving Five Bytes of Data with Loop

FIGURE 6.1

Example 6.2 is a program listing that corresponds to the flow chart:

Example 6.2: Moving Five Bytes of Data with Loop

LABEL INSTRUCTION OPERAND COMMENTS
INITIALIZE CLC
START LDA FIELD 1
OTHER STA FIELD 2 Move Loop
 LDA START + 1
 ADC #1
 STA START + 1 Modify Move Values
 LDA OTHER + 1
 ADC #1
 STA OTHER + 1
 CMP #FIELD 2 + 5 Check for End
 BNE START

NOTE: For ease of reading, labels have been written in the form
 “FIELD 1”. This is incorrect format for use in the various symbolic
 assemblers. "FIELD 1" must be written “FIELD1” when coding for
 assembler formats.

73

Assuming Zero Page, direct addressing, Example 6.3 is written below with
one byte per line just as it would appear in program memory. This will
provide a more detailed description of Example 6.2.

Example 6.3: Coded Detail of Moving Fields with Loop

LABEL CODE NAMES COMMENTS
 CLC Clear Carry
START LDA (FIELD 1) A
 FIELD 1
OTHER STA A (FIELD 2)
 FIELD 2
 LDA From Address A
 START + 1
 ADC A + 1 A
 1
 STA A From Address
 START + 1
 LDA To Address A
 OTHER + 1
 ADC A + 1 A
 1
 STA A + To Address
 OTHER + 1
 CMP A – ORIGINAL FIELD 2 + 5
 ORIGINAL FIELD 2 + 5
 BNE If not, loop to START
 START

In this example, the program is modifying the addresses of one load

instruction and one store instruction rather than writing ten instructions to

move five bytes of data and fifty instructions to move twenty-five bytes

of data.

The address of the Load A instruction is located in memory at START + 1

and the Store instruction at OTHER + 1. In order to perform this operation,

the address must be modified once for each move operation until all of

the data is moved.

Checking for the end of the moves is accomplished by checking the results

of the address modification to determine if the address exceeds the end

of the second field. When it does, the routine is complete.

74

If a hundred values were to be moved this program would remain 20

bytes long, whereas the solution to the first problem would require a

program of 200 instructions.

The type of coding used in this example is called a “loop”. Although the

program loop in this case requires as many bytes as the original program,

more values could be moved without increasing the length of the program.

The greater the number of repetitive operations that are to be

accomplished, the greater the advantage of the loop type program over

straight line programming.

Important Note: The execution time required to move the five values is

significantly longer using the loop program than the straight line program.

In the straight line program, if a Zero Page operation is assumed, the

time to perform the total move is 30 cycles. Using the loop program, the

execution time to move five values is five times through the entire loop,

which takes 25 cycles. Therefore the time to move five values is 125

cycles.

While loops have an advantage in coding space efficiency, all loops cost

time. If the programmer has a problem that is extremely time dependent,

taking the loop out and going to straight line programming, even though

it is extremely inefficient in terms of its utilization of memory, will often

solve the timing problem.

The straight line programming technique becomes very useful in some

control applications. However, it is not recommended as a standard

technique but should only be used when there are extreme timing

problems. Using loops will normally save a significant number of bytes

but they will always take more time.

The technique used in the loop program example has two major

problems:

1. The necessity to modify program memory. This should be

 avoided to take advantage of the ability to put programs into

 read only memory with the corresponding savings in hardware

 costs.

75

2. Although this is the simplist form of computed addressing, less

 program bytes would be necessary than the more sophisticated

 form of program shown in the following flow chart:

Moving Five Bytes of Data with Counter

FIGURE 6.2

In the MCS650X microprocessor family, the counter is called an index

register. It is an 8-bit register which is loaded from memory and has the

ability to have one added to it by an increment instruction (INX, INY) and

can be compared directly to memory using the compare index instruction

(CPX, CPY). Example 6.4 shows the program listing for the flow chart of

Figure 6.2.

76

Example 6.4: Moving Five Bytes of Data with Index Registers

BYTES LABEL INSTRUCTION OPERAND COMMENTS
2 LDX 0 Load Index with Zero
3 LOOP LDA FIELD 1,X
3 STA FIELD 2,X
1 INX Increment Count
2 CPX 5 Compare for End
2 BNE LOOP

 13 for Absolute

In this example, index register X is used as an index and as a counter. It

is initialized to zero. Data is fetched from memory at the address “FIELD

1 plus the value of register X”, and placed in A. The data is then written

from A to memory at the address “FIELD 2 plus the value of register X”.

Register X is incremented by one and compared with 3 in order to

determine if all five data values have been transferred. If not the

program loops back to LOOP. In this example, “FIELD 1” is called the

“Base Address” which is the address to which indexing is referenced.

This only takes 11 or 13 bytes, depending on whether or not the field is

in Page Zero or in absolute memory. It still takes 13 or 15 cycles per byte

moved, again confirming that loops are excellent for coding space but

not for execution time.

It can be seen from the example that there are basically two criteria for

an index register; one, that it be a register which is easily incremented,

compared, loaded, and stored, and two, that in a single instruction one

can specify both the Base Address and the value of X.

In the MCS650X microprocessor, the way that the indexed instruction is

symbolically represented is OP CODE, Address, X. This indicates to the

symbolic assembler that an instruction OP CODE should be picked, which

should specify either the absolute address modified by the content of

index X register or Zero Page address modified by the content of index

X register.

77

In performing these operations, the microprocessor fetches the instruction

OP CODE as previously defined, and fetches the address, modifies the

address from the memory by adding the index register to it prior to

loading or storing the value of memory.

The index register is a counter. As discussed previously, one of the

advantages of the flags in the microprocessor is that a value can be

modified and its results tested. Assume the last example is modified so

that instead of moving the first value in FIELD 1 to the first value in FIELD

2, the last value in FIELD 1 is moved first to the last value in FIELD 2, then

the next to the last value, etc. and finally the first value. With the index

register preloaded with 5 and using a decrement instruction the contents

of the index register would end at zero after the 5 fields of data were

transferred. The zero indicates that the number of times through the loop

is correct and the loop exited by use of the zero test. The program listing

for this modification is shown in Example 6.5:

Example 6.5: Moving Five Bytes of Data by Decrementing the Index
 Register

LABEL INSTRUCTION OPERAND

 LDX 5

LOOP LDA FIELD 1–1,X

 STA FIELD 2–1,X

 DEX

 BNE LOOP

In this example, Index Register X is again used as an Address Counter

but it will count backwards. It is initialized to five for this example. Data

is fetched from memory at the address “FIELD 1 plus the value of Register

X” and placed in A. The data is then written from A to memory at the

address “FIELD 2 plus the value of Register X.” Register X is decremented

by one. If the decremented value is not zero, as determined by a Branch

on Zero instruction, the program loops back to LOOP

The loop has been decreased to 9 or 11 bytes and the execution time

per byte has been decreased from 15 cycles to 13 cycles per value which

78

shows the advantage of using the flag setting of the decrement index

instruction.

The two index registers, X and Y, can now be added to the system block
diagram as in Figure 6.3

Partial Block Diagram of MCS650X Including Index Registers

FIGURE 6.3

Each of the index registers is 8 bits long and is loaded and stored from

memory, using techniques similar to the accumulator. Because of this

ability, they can be considered as auxiliary channels to flow data through

the microprocessor. However, their primary use is in being added to

addresses fetched from memory to form a modified effective address,

as described previously. Both index registers have the ability to be

compared to memory (CPX, CPY) and to be incremented (INX, INY) and

decremented (DEX, DEY).

79

Because of OP CODE limitations, X and Y have slightly different uses. X
is a little more flexible because it has Zero Page operations which Y does
not have with exception of LDX and STX. Aside from which modes they
modify, the registers are autonomous, independent and of equal value.

6.1 ABSOLUTE INDEXED

Absolute indexed address is absolute addressing with an index register
added to the absolute address. The sequences that occur for indexed
absolute addressing without page crossing are as follows:

Example 6.6: Absolute Indexed; with No Page Crossing

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Increment PC to 101,
Finish Previous
Instruction

2 0101 BAL Fetch BAL Increment PC to 102,
Interpret Instruction

3 0102 BAH Fetch BAH Increment PC to 103,
Calculate BAL+X

4 BAH, BAL+X OPERAND Put Out
Effective
Address

5 0103 Next OP
CODE

Fetch Next
OP CODE

Finish Operations

BAL and BAH refer to the low and high order bytes of the base address,

respectively. While the index X was used in Example 6.7, the index Y is

equally applicable.

If a page is not crossed, the results of the address low + X does not cause

a carry. The processor is able to pipeline the addition of the 8-bit index

register to the lower byte of the base address (BAL) and not suffer any

time degradation for absolute indexed addressing over straight absolute

addressing. In other words, while BAH is being fetched, the add of X to

BAL occurs. Both addressing modes require four cycles with the only

80

difference being that X or Y must be set at a known value and the OP

CODE must indicate an index X or Y.

The second possibility is that when the index register is added to the

address low of the base address that the resultant address is in the next

page. This is illustrated in Example 6.7.

Example 6.7: Absolute Indexed; with Page Crossing

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation Increment
PC to 101

2 0101 BAL Fetch BAL Interpret Instruction
Increment PC to 102

3 0102 BAH Fetch BAH Add BAL + Index
Increment PC to 103

4 BAH, BAL+X DATA
(ignore)

Fetch DATA
(Data is ignored)

Add BAH + Carry

5 BAH+1,
BAL+X

DATA Fetch DATA

6 0103 Next OP
CODE

Fetch Next
OP CODE

Finish Operations

The most substantial difference between the page crossing operation and

no page crossing is that during the fourth cycle, the address high and the

calculated address low is put out, thereby incorrectly addressing the

same page as the base address. This operation is carried on in parallel

with the adding of the carry to the address high. During the fourth cycle

the address high plus the carry from the adder is put on the address bus,

moving the operation to the next page. Thus there are two effects from

the page crossing. 1. The addressing of a false address. This is similar to

what happens in a branch relative during a page crossing. 2. The

operation takes one additional cycle while the new address high is

calculated. As with the branch relative this page crossing occurs

81

independently of programmer action and there is no penalty in memory

for having crossed the page boundary. It is possible for the programmer

to predict a page crossing by the knowing the value of the base address

and the maximum offset value in the index register. If timing is of concern,

the base address can be adjusted so that the address field is always in

one page.

As with absolute addressing, absolute indexed is the most general form

of indexing. It is possible to do absolute indexed modified by X, and

absolute indexed modified by Y. Instructions which allow absolute

indexed by X are ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR,

ORA, ROL, SBC and STA.

The instructions which allow indexed absolute by Y are ADC, AND, CMP,

EOR, LDA, LDX, ORA, SBC and STA.

6.2 ZERO PAGE INDEXED

As with non-computed addressing, there is a memory use advantage to

the short-cut of Zero Page addressing. Except in LDX and STX instructions

which can be modified by Y, Zero Page is only available modified by X.

If the base address plus X exceeds the value that can be stored in a

single byte, no carry is generated, therefore there is no page crossing

phenomena. A wrap-around will occur within Page Zero. The following

example illustrates the internal operations of Zero Page indexing.

82

Example 6.8: Illustration of Zero Page Indexing

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 → PC

2 0101 BAL Fetch Base
Address Low
(BAL)

Interpret Instruction,
0102 → PC

3 00,BAL DATA
(Dis-
carded)

Fetch
Discarded
DATA

Add: BAL + X

4 00,BAL+X DATA Fetch DATA
Address

5 0102 Next OP
CODE

Fetch Next
OP CODE

Finish Operation

As can be seen from the example, there is no time savings of Zero Page

indexing over absolute indexing without page crossing. In the case of the

indexed absolute during cycle 3 the address high is being fetched at the

same time as the addition of the index to address low. In the case of the

Zero Page, there is no opportunity for this type of overlap; therefore,

indexed Zero Page instructions take one cycle longer than non-indexed

instructions.

In both Zero Page indexed and absolute indexed with a page crossing,

there are incorrect, addresses calculated. Provisions have been made to

make certain that, only a READ operation occurs during this time. Memory

modifying operations such as STORE, SHIFT, ROTATE, etc. have all been

delayed until the correct address is available, thereby prohibiting any

possibility of writing data in an incorrect location and destroying the

previous data in that location.

As has been previously stated, there is no carry out of the Zero Page

operation. 00 is forced into address high under all circumstances in cycle

4. For example, if the index register containing a value of 10 is to be

added to base address containing a value of F7, the following operation

would occur:

83

Example 6.9: Demonstrating the Wrap-Around

Cycle Address Bus Internal Operation

3 00F7 F7 + 10

4 0007

This indicated the wrap-around effect that occurs with Zero Page

indexing with page crossing. This wrap-around does not increase the

cycle time over that shown in the previous example.

Only index X is allowed as a modifier in Zero Page. Instructions which

have this feature include ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY,

LSR, ORA, ROL, SBC, STA and STY. Note that index Y is allowed in the

instructions LDX and STX.

6.3 INDIRECT ADDRESSING

In solving a certain class of problems, it is sometimes necessary to have

an address which is a truly computed value, not just a base address with

some type of offset, but a value which is calculated or sometimes

obtained as a group of addresses. In order to implement this type of

indexing or addressing, the use of indirect addressing has been

introduced.

In the MCS650X family indirect operations have a special form. The basic

form of the indirect addressing is that of an instruction consisting of an

OP CODE followed by a Zero Page address. The microprocessor obtains

the effective address by picking up from the Zero Page address the

effective address of the operation. The indirect addressing operation is

much the same as absolute addressing except indirect addressing uses a

Zero Page addressing operation to indirectly access the effective

address. In the case of absolute addressing the value in the program

counter is used as the address to pick up the effective address low, one

is added to the program counter which is used to pick up the effective

address high. In the case of indirect addressing, the next value after the

OP CODE, as addressed with the program counter, is used as a pointer

to address the effective address low in the zero page. The pointer is then

84

incremented by one with the effective address high fetched from the next

memory location. The next cycle places the effective address high (ADH)

and effective address low (ADL) on the address bus to fetch the data. An

illustration of this is shown in Figure 6.4.

Indirect Addressing – Pictorial Drawing

FIGURE 6.4

The address following the instruction is really the address of an address,

or “indirect” address. The indirect address is represented by IAL in the

figure.

A more detailed definition of indirect addressing is included in the

appendix.

85

Although the MCS650X microprocessor family has indirect operations, it

has no simple indirect addressing such as described above. There are two

modes of indirect addressing in the MCS650X microprocessor family:

1.) indexed indirect and 2.) indirect indexed.

6.4 INDEXED INDIRECT ADDRESSING

The major use of indexed indirect is in picking up data from a table or

list of addresses to perform an operation. Examples where indexed

indirect is applicable is in polling I/O devices or performing string or

multiple string operations. Indexed indirect addressing uses the index

register X. Instead of performing the indirect as shown in the Figure 6.4,

the index register X is added to the Zero Page address, thereby allowing

varying address for the indirect pointer. The operation and timing of the

indexed indirect addressing is shown in Figure 6.5.

Indexed Indirect Addressing

FIGURE 6.5

86

Example 6.10: Illustration of Indexed Indirect Addressing

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 → PC

2 0101 BAL Fetch BAL Interpret Instruction,
0102 → PC

3 00,BAL Data
(Dis-
carded)

Fetch
Discarded
Data

Add BAL + X

4 00,BAL+X ADL Fetch ADL Add 1 to BAL + X

5 00,BAL+X+1 ADH Fetch ADH Hold ADH

6 ADH, ADL DATA Fetch DATA

7 0102 Next OP
CODE

Fetch Next OP
CODE

Finish Operation
0103 → PC

One of the advantages of this type of indexing is that a 16-bit address

can be fetched with only two bytes of memory, the byte that contains the

OP CODE and the byte that contains the indirect pointer. It does require,

however, that there be a table of addresses kept in a read/write

memory which is more expensive than having it in read only memory.

Therefore, this approach is normally reserved for applications where use

of indexed indirect results in significant coding or throughput

improvement or where the address being fetched is a variable computed

address.

It is also obvious from the example that the user pays a minor time

penalty for this form of addressing in that indexed indirect always takes

six cycles to fetch a single operand which is 25% more than an absolute

address and 50% more than a Zero Page reference to an operand. As

in the Zero Page indexed, the operation in cycles three and four are

located in Zero Page and there is no ability to carry over into the next

page. It is possible to develop a value of the index plus the base address

where the result exceeded 255, in this case the address put out is a wrap-

around to the low part of the Page Zero.

87

Instructions which allow the use of indexed indirect are ADC, AND, CMP,

EOR, LDA, ORA, SBC, STA.

6.5 INDIRECT INDEXED ADDRESSING

The indirect indexed instruction combines a feature of indirect addressing

and a capability of indexing. The usefulness of this instruction is primarily

for those operations in which one of several values could be used as part

of a subroutine. By having an indirect pointer to the base operation and

by using the index register Y in the normal counter type form, one can

have the advantages of an address that points anywhere in memory,

combined with the advantages of the counter offset capability of the

index register.

Figure 6.6 illustrates the indirect indexed concept in flow form while

Example 6.11 indicates the internal operation of a non-page roll-over of

an indirect index.

Indirect Indexed Addressing

FIGURE 6.6

88

Example 6.11: Indirect Indexed Addressing (No Page Crossing)

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 → PC

2 0101 IAL Fetch IAL Interpret Instruction,
0102 → PC

3 00,IAL BAL Fetch BAL Add 1 to IAL

4 00,IAL+1 BAH Fetch BAH Add BAL + Y

5 BAH,BAL+Y DATA Fetch Operand

6 0102 Next OP
CODE

Fetch Next OP
CODE

Finish Operation
0103 → PC

The indirect index still requires two bytes of program storage, one for

the OP CODE, one for the indirect pointer. Once beyond the indirect, the

indexing of the indirect memory location is just the same as though it was

an absolute indexed operation in the sense that if there is no page

crossing, pipelining occurs in the adding of the index register Y to address

low while fetching address high, and therefore, the non-page crossing

solution is one cycle shorter than the indexed indirect. In Example 6.12 it

is seen that the page crossing problem that occurs with absolute indexed

page crossing also occurs with indirect indexed addressing.

89

Example 6.12: Indirect Indexed Addressing (with Page Crossing)

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 → PC

2 0101 IAL Fetch IAL Interpret Instruction,
0102 → PC

3 00,IAL BAL Fetch BAL Add 1 to IAL

4 00,IAL+1 BAH Fetch BAH Add BAL + Y

5 BAH,BAL+Y DATA (Dis-
carded)

Fetch DATA
(Discarded)

Add 1 to BAH

6 BAH+1
BAL+Y

DATA Fetch DATA

7 0102 Next OP
CODE

Fetch Next OP
CODE

Finish Operation
0103 → PC

When there is a page crossing, the base address high and base address

low plus Y are pointing to an incorrect location within a referenced page.

However, it should be noted that the programmer has control of this

incorrect reference in the sense that it is always pointing to the page of

the base address. In one more cycle the correct address is referenced. As

was true in the case of absolute indexed, the data at the incorrect

address is only read. STA and the various read, modify, write memory

commands all operate assuming that there will be a page crossing, take

the extra cycle time to perform the add and carry and only perform a

write on the sixth cycle rather than taking advantage of the five cycle

short-cut which is available to read operations. This added cycle

guarantees that a memory location will never be written into with

incorrect data.

Instructions which allow the use of indexed indirect are ADC, AND, CMP,

EOR, LDA, ORA, SBC, STA.

90

In the following two examples can be seen a comparison between the use

of absolute modified by Y and indirect indexed addressing.

In these examples the same function is performed. Values from two

memory locations are added and the result stored in a third memory

location, assuming that there are several values to be added. The first

example deals with known field locations. The second example, such as

might be traditionally used in subroutines, deals with field locations that

vary between routines. A two byte pointer for each routine using the

subroutine is stored in Page Zero. The number of values to be added for

each routine is also stored.

Example 6.13: Absolute Indexed Add – Sample Program

#Bytes Cycles Label Instruction Comments

2 2 START LDY #COUNT–1 Set Y = End of FIELD

3 4 LOOP LDA FIELD 1,Y Load Location 1

3 4 ADC FIELD 2,Y Add Location 2

3 4 STA FIELD 3,Y Store in Location 3

1 2 DEY

2 3 BPL LOOP Check for Less Than Zero

14 19 Time for 10 Bytes = 171 Cycles

Example 6.14: Indirect Indexed Add – Sample Program

#Bytes Cycles Label Instruction Comments

2 2 START LDY #COUNT–1 Set Y = End of FIELD

2 5 LOOP LDA (PNT1), Y Load FIELD 1 Value

2 5 ADC (PNT2), Y Add FIELD 2 Value

2 5 STA (PNT3), Y Store FIELD 3 Value

1 2 DEY

2 3 BPL LOOP Check for Less Than Zero

11 22 Time for 10 Bytes = 201 Cycles

 + 6 Bytes for Pointers

91

The “count” term in these examples represents the number of sets of

values to be added and stored. Loading the index register with COUNT–

1 will allow a fall through the BPL instruction when computation on all set

of values has been completed.

There is a definite saving in program storage using indirect because it

only requires two bytes for each indirect pointer, the OP CODE plus the

pointer of the Page Zero location, whereas in the case of the absolute, it

takes three bytes, the OP CODE, address low and address high.

It is noted that there are six bytes of Page Zero memory used for pointers,

two bytes for each pointer. The number of memory locations allocated to

the problem are 17 for the indirect and 14 for the problem where the

values are known. The execution time is longer in the indirect loop. Even

though the increase in time for a single pass through the loop is only three

cycles, if many values are to be transferred, it adds up. It is important to

note that loops require time for setup but it is only used once. But in the

loop itself, additional time is multiplied by the number of times the

program goes through the loop; therefore, on problems where execution

time is important, the time reduction effort should be placed on the loop.

Even though the loop time is longer and the actual memory expended is

greater for the indexed indirect add, it has the advantage of not

requiring determination of the locations of FIELD 1, FIELD 2, and FIELD 3

at the time the program was written as is necessary with absolute.

An attempt to define problems to take advantage of this shorter memory

and execution time by defining fields should be investigated first.

However, in almost every program, the same operation must be

performed several times. In those cases, it is sometimes more useful to

define a subroutine and set the values that the subroutine will operate on

as fields in memory. Pointers to these fields are placed in the Zero Page

of memory and then the indexed indirect operation is used to perform

the function. This is the primary use of the indexed indirect operation.

92

6.6 INDIRECT ABSOLUTE

In the case of all of the indirect operations previously described, the

indirect reference was always to a Page Zero location from which is

picked up the effective address low and effective address high. There is

an exception in the MCS650X microprocessor family for the jump

instruction in which absolute indirect jumps are allowed. The use of the

absolute indirect jump is best explained in the discussion on interrupts

where the addressing mode and its capabilities are explained.

6.7 APPLICATION OF INDEXES

As has been developed in many of the previous examples, an index

register has primary values as a modifier and as a counter. As a modifier

to a base address operation, it allows the accessing of contiguous groups

of data by simple modification of the index. This is the primary

application of indexes and it is for this purpose they were created virtue

of the fact that all of the MCS650X instructions have the base address in

the instruction, or in the case of the indirect, in the pointer, a single index

can usually be used to service an entire loop, because each of the many

instructions in the loop normally are referring to the same relative value

in each of the lists. An example is adding the third byte of a number to

its corresponding third byte of another number, then storing the result in

the memory location representing the third byte of the result; therefore,

the index register only needs to contain three to accomplish all three of

these offset functions.

Some other microprocessors use internal registers as indirect pointers. The

single register requirement is a significant advantage of the type of

indexing done in the MCS650X. Even though the MCS650X has two

indexes, more often than not, a single index will solve many of the

problems because of the fact that the data is normally organized in

corresponding fields.

The second feature of the MCS650X type of indexing is that, if used

properly, the index register also contains the count of the operations to

be performed.

93

The examples have tried to show how to take advantage of that feature.

There are two approaches to counting; forward counting and reverse

counting. In forward counting, the data in memory can be organized such

that the index register starts at zero and is added to on each successive

operation. The disadvantage of this type of approach is that the compare

index instruction, as used in Example 6.13 must be inserted into the loop

in order to determine that the correct number of operations is completed.

The reverse counting approach has been used in the latter examples. The

data must be organized for reverse counting operation. The first value to

be operated on is at the end of the FIELD, the next value is one memory

location in front of that, etc. The advantage of this type of operation is

that it takes advantage of the combined decrement and test capability

of the processor. There are two ways to use the test. First there is the case

where the actual number of operations to be performed is loaded into

the index register such as was done in Example 6.13. In this case, the

index contains the correct count but if added to the base directly, would

be pointing to one value beyond the FIELD because the base address

contains the first byte. Therefore, when using the actual count in the index

register, one always references to the base address minus one. This is

easily accomplished as shown in the examples. The cross assembler

accepts symbolic references in the form of base address minus one, and

the microprocessor very carefully performs the operation shown.

The advantage of the actual count in the register is that the branch if not

equal instruction (BNE) can be used because the value of the register goes

to zero on the last operation.

The second alternative is to load the counter with the count minus one as

done in Example 6.14. In this case, the actual value of the base address

is used in the offset. However, the branch back to loop now is a branch

plus, remembering that the value in the index register will not go to minus

(all ones) until we decrement past zero.

94

Values of count minus one through zero will all take the branch. It is only

when attempting to reference less than the base address that the loop

will be completed.

Either approach gives minimum coding and only requires that the user

develop a philosophy of always organizing his data with the first value

at the end. In many cases, the operations such as MOVE can be

performed even if the data is organized the other way. Experienced

programmers find that this reverse counting form is actually more

convenient to use and always results in minimum loop time and space.

Although for most applications, the 8-bit index register allows simple

count in offset operations, there are a few operations where the 256

count that is available in the 8-bit register is not enough to perform the

indexed operations. There are two solutions to this problem. First, to code

the program with two sets of bases, that is duplicating the coding for the

loop with two different address highs, each one a page apart. The

second, more useful solution, is to go to indirect operations because the

indirect pointer can be modified to allow an infinite indexed operation.

An example of the move done under 256 and over 256 is shown in the

following example:

Example: 6.15: Move N Bytes (N<256)

Number of
Cycles

Program
Label

Instruction
Mnemonics

OPERAND
FIELD Comments

2 LDX #BLOCK Setup 2 Cycles

4 LOOP LDA FROM –1,X

4 STA TO –1,X LOOP Time:

2 DEX 13 Cycles

3 BNE LOOP

 Memory required: 11 Bytes

95

Example: 6.16: Move N Bytes (N>256)

Number of

Cycles
Program
Label

Instruction
Mnemonics

OPERAND
FIELD Comments

2 MOVE LDA #FROML

3 STA FRPOINT
2 LDA #FROMH Move from address to
3 STA FRPOINT+1 an indirect pointer

2 LDA #TOL
 Move A to address

3 STA TOPOINT to an index pointer
2 LDA #TOH
3 STA TOPOINT+1
2 LDX #BLOCKS Setup # of 256 blocks
2 LDY #0 to move
5 LOOP LDA (FRPOINT),Y Loop Time: 16 cycles/
6 STA (TOPOINT),Y byte. Move 256 bytes
2 DEY
3 BNE LOOP
5 SPECIAL INC FRPOINT+1 Increase high
5 INC TOPOINT+1 pointer
2 DEX
2 BMI OUT Check for last move
3 BNE LOOP
2 LDY #COUNT
3 BNE LOOP Setup last move

 OUT

 Memory required: 40 Bytes

96

CHAPTER 7

INDEX REGISTER INSTRUCTIONS

The index registers can be treated as auxiliary-general purpose
registers, having the added ability of being incremented and
decremented because of the normal operations in which they are
required to perform.

7.0 LDX – LOAD INDEX REGISTER X FROM MEMORY

Load the index register X from memory.

The symbolic notation is M → X.

LDX does not affect the C or V flags; sets Z if the value loaded was zero,
otherwise resets it; sets N if the value loaded in bit 7 is a 1; otherwise N
is reset, and affects only the X register. The addressing modes for LDX
are Immediate; Absolute; Zero Page; Absolute Indexed by Y; and Zero
Page Indexed by Y.

7.1 LDY – LOAD INDEX REGISTER Y FROM MEMORY

Load the index register Y from memory.

The symbolic notation is M → Y.

LDY does not affect the C or V flags, sets the N flag if the value loaded
in bit 7 is a 1, otherwise resets N, sets Z flag if the loaded value is zero
otherwise resets Z and only affects the Y register. The addressing modes
for load Y are Immediate; Absolute; Zero Page; Zero Indexed by X,
Absolute Indexed by X.

97

7.2 STX – STORE INDEX REGISTER X IN MEMORY

Transfers value of X register to addressed memory location.

The symbolic notation is X → M.

No flags or registers in the microprocessor are affected by the store
operation. The addressing modes for STX are Absolute, Zero Page, and
Zero Page Indexed by Y.

7.3 STY – STORE INDEX REGISTER Y IN MEMORY

Transfer the value of the Y register to the addressed memory location.

The symbolic notation is Y → M.

STY does not affect any flags or registers in the microprocessor. The
addressing modes for STY are Absolute; Zero Page; and Zero Page
Indexed by X.

7.4 INX – INCREMENT INDEX REGISTER X BY ONE

Increment X adds 1 to the current value of the X register. This is an 8-bit
increment which does not affect the carry operation, therefore, if the
value of X before the increment was FF, the resulting value is 00. The

symbolic notation is X + 1 → X. INX does not affect the carry or overflow
flags; it sets the N flag if the result of the increment has a one in bit 7,
otherwise resets N; sets the Z flag if the result of the increment is 0,
otherwise it resets the Z flag. INX does not affect any other register other
than the X register. INX is a single byte instruction and the only addressing
mode is Implied.

7.5 INY – INCREMENT INDEX REGISTER Y BY ONE

Increment Y increments or adds one to the current value in the Y register,
storing the result in the Y register. As in the case of INX the primary
application is to step through a set of values using the Y register. The

symbolic notation is Y + 1 → Y. The INY does not affect the carry or
overflow flags, sets the N flag if the result of the increment has a one in
bit 7, otherwise resets N, sets Z if as a result of the increment the Y register

98

is zero otherwise resets the Z flag. Increment Y is a single byte instruction
and the only addressing mode is Implied.

7.6 DEX – DECREMENT INDEX REGISTER X BY ONE

This instruction subtracts one from the current value of the index register
X and stores the result in the index register X.

The symbolic notation is X – 1 → X.

DEX does not affect the carry or overflow flag, it sets the N flag if it has
bit 7 on as a result of the decrement, otherwise it resets the N flag; sets
the Z flag if X is a 0 as a result of the decrement, otherwise it resets the
Z flag.

DEX is a single byte instruction, the addressing mode is Implied.

7.7 DEY – DECREMENT INDEX REGISTER Y BY ONE

This instruction subtracts one from the current value in the index register
Y and stores the result into the index register Y. The result does not affect
or consider carry so that the value in the index register Y is decremented
to 0 and then through 0 to FF.

Symbolic notation is Y – 1 → Y.

Decrement Y does not affect: the carry or overflow flags; if the Y register
contains bit 7 on as a result of the decrement the N flag is set, otherwise
the N flag is reset. If the Y register is 0 as a result of the decrement, the
Z flag is set otherwise the Z flag is reset. This instruction only affects the
index register Y.

DEY is a single byte instruction and the addressing mode is Implied.

NOTE: Decrement of the index registers is the most convenient method of
using the index registers as a counter, in that the decrement involves
setting the value N on as a result of having passed through 0 and sets Z
on when the results of the decrement are 0.

99

7.8 CPX – COMPARE INDEX REGISTER X TO MEMORY

This instruction subtracts the value of the addressed memory location from
the content of index register X using the adder but does not store the
result; therefore, its only use is to set the N, Z and C flags to allow for
comparison between the index register X and the value in memory.

The symbolic notation is X – M.

The CPX instruction does not affect any register in the machine; it also

does not affect the overflow flag. It causes the carry to be set on if the

absolute value of the index register X is equal to or greater than the

data from memory. If the value of the memory is greater than the content

of the index register X, carry is reset. If the results of the subtraction

contain a bit 7, then the N flag is set, if not, it is reset. If the value in

memory is equal to the value in index register X, the Z flag is set,

otherwise it is reset.

The addressing modes for CPX are Immediate, Absolute and Zero Page.

7.9 CPY – COMPARE INDEX REGISTER Y TO MEMORY

This instruction performs a two's complement subtraction between the

index register Y and the specified memory location. The results of the

subtraction are not stored anywhere. The instruction is strictly used to set

the flags.

The symbolic notation for CPY is Y – M.

CPY affects no registers in the microprocessor and also does not affect

the overflow flag. If the value in the index register Y is equal to or

greater than the value in the memory, the carry flag will be set, otherwise

it will be cleared. If the results of the subtraction contain bit 7 on, the N

bit will be set, otherwise it will be cleared. If the value in the index

register Y and the value in the memory are equal, the zero flag will be

set, otherwise it will be cleared.

The addressing modes for CPY are Immediate, Absolute and Zero Page.

100

7.10 TRANSFERS BETWEEN THE INDEX REGISTERS AND

 ACCUMULATOR

There are four instructions which allow the accumulator and index

registers to be interchanged. They are TXA, TAX which transfers the

contents of the index register X to the accumulator A and back, and TYA,

TAY which transfers the contents of the index register Y to the accumulator

A and back. The usefulness of this will be discussed after the instructions.

7.11 TAX – TRANSFER ACCUMULATOR TO INDEX X

This instruction takes the value from accumulator A and transfers or loads

it into the index register X without disturbing the content of the

accumulator A.

The symbolic notation for this is A → X.

TAX only affects the index register X, does not affect the carry or

overflow flags. The N flag is set if the resultant value in the index register

X has bit 7 on, otherwise N is reset. The Z bit is set if the content of the

register X is 0 as a result of the operation, otherwise it is reset. TAX is a

single byte instruction and its addressing mode is Implied.

7.12 TXA – TRANSFER INDEX X TO ACCUMULATOR

This instruction moves the value that is in the index register X to the

accumulator A without disturbing the content of the index register X.

The symbolic notation is X → A.

TXA does not affect any register other than the accumulator and does not

affect the carry or overflow flag. If the result in A has bit 7 on, then the

N flag is set, otherwise it is reset. If the resultant value in the accumulator

is 0, then the Z flag is set, otherwise it is reset.

The addressing mode is Implied, it is a single byte instruction.

101

7.13 TAY – TRANSFER ACCUMULATOR TO INDEX Y

This instruction moves the value of the accumulator into index register Y
without affecting the accumulator.

The symbolic notation is A → Y.

TAY instruction only affects the Y register and does not affect either the
carry or overflow flags. If the index register Y has bit 7 on, then N is set,
otherwise it is reset. If the content of the index register Y equals 0 as a
result of the operation, Z is set on, otherwise it is reset.

TAY is a single byte instruction and the addressing mode is Implied.

7.14 TYA – TRANSFER INDEX Y TO ACCUMULATOR

This instruction moves the value that is in the index register Y to
accumulator A without disturbing the content of the register Y.

The symbolic notation is Y → A.

TYA does not affect any other register other than the accumulator and
does not affect the carry or overflow flag. If the result in the accumulator
A has bit 7 on, the N flag is set, otherwise it is reset. If the resultant value
in the accumulator A is 0, then the Z flag is set, otherwise it is reset.

The addressing mode is Implied and it is a single byte instruction.

Some of the applications of the transfer instructions between accumulator
A and index registers X, Y are those when the user wishes to use the index
register to access memory locations where there are multiple byte values
between the addresses. In this application a count is loaded into the index
register, the index register is transferred to the accumulator, a value such
as 5, 7, 10, etc. is added immediate to the accumulator and results stored
back into the index register using the TAX or TAY instruction. The

102

consequence of this type of operation is that it allows the microprocessor
to address non-consecutive locations in memory. Another application is
where the internal transfer instructions allow the index registers to hold
intermediate values for the accumulator which allows rapid transfer to
and from the accumulator to help solve high speed data shuffling
problems.

7.15 SUMMARY OF INDEX REGISTER APPLICATIONS AND
 MANIPULATIONS

Primary use of index register X and Y is as offset and counters for data
manipulation in which the index register is used to compute an address
based on the value of the index register plus base address specified by
the user, either in a fixed instruction format or in a variable pointer type
format. In order to operate as both an offset and counter, index registers
may be incremented or decremented by one or compared to values from
memory. There are limitations on the applications of each of the index
registers which have to do with formats which are unique to certain
instruction addressing modes. Because of the ability of the index registers
to be loaded, changed and stored, they are also useful as general
purpose registers. They can be used as interim storages for moves
between memory locations or for moves between memory and the
accumulator.

One of the optimum uses of the indexing concept is the case when the
index register is being used both as an offset and a counter. This type of
operation uses the ability of the microprocessor to perform a decrement
function on the index registers and set flags. Therefore, a single
decrement instruction not only changes the value in the counter but can
also perform a test on the count value.

103

CHAPTER 8

STACK PROCESSING

8.0 INTRODUCTION TO STACK AND TO PUSH DOWN STACK
 CONCEPT

In all of the discussions on addressing, it has been assumed that either the
exact location or at least a relation to an exact location of a memory
address was known.

Although this is true in most of the programming for control applications,
there are certain types of programming and applications which require
that the basic program not be working with known memory locations but
only with a known order for accessing memory. This type of programming
is called re-entrant coding and is often used in servicing interrupts.

To implement this type of addressing, the microprocessor maintains a
separate address generator which is used by the program to access
memory. This address generator uses a push down stack concept.

Discussions of push down stacks are usually best stated considering that if
one were given 3 cards, an ace, a king and a ten and were told that the
order of cards was important and asked to lay them down on the table
in the order in which they were given, ace first, the king on top of it and
finally the ten, and then if they were retrieved, 1 card at a time, the ten
is retrieved first even though it was put on last, the king is retrieved
second, the ace retrieved last, even though it was put on first.

The only commands needed to implement this operation are “put next
card on stack” and “pull next card from the stack.” The stack could be
processing clubs and then go to diamonds and back to clubs. However,
we know that while we are processing clubs, we will always find ten first,
king second, etc.

104

The hardware implementation of the ordered card stack which just

described is a 16-bit counter, into which the address of a memory location

is stored. This counter is called a “Stack Pointer.” Every time data is to be

pushed onto the stack, the stack pointer is put out on the address bus,

data is written into the memory addressed by the stack pointer, and the

stack pointer is decremented by 1 as may be seen in Example 8.1. Every

time data is pulled from the stack, the stack pointer is incremented by 1.

The stack pointer is put out on the address bus, and data is read from the

memory location addressed by the stack pointer. This implementation

using the stack pointer gives the effect of a push down stack which is

program independent addressing.

Example 8.1: Basic stack may for 3-deep JMP to subroutine sequence

Stack Address Data

01FF PCH1
01FE PCL1
01FD PCH2
01FC PLC2
01FB PCH3
01FA PCL3
01F9

In the above example, the stack pointer starts out at 01FF. The stack

pointer is used to store the first state of the program counter by storing

the content of program counter high at 01FF and the content of program

counter low at 01FE. The stack pointer would now be pointed at 01FD.

The second time the store program count is performed, the program

counter high number is stored on the stack at 01FD and the program

counter low is stored at 01FC. The stack pointer would now be pointing

at 01FB. The same procedure is used to store the third program counter.

When data is taken from the stack, the PCL3 will come first and the PCH3

will come second just by adding 1 to the stack pointer before each

memory read. The example above contains the program count for 3

successive jump and store operations where the jump transfers control to

a subroutine and stores the value of the program counter onto the stack

in order to remember to which address the program should return after

completion of the subroutine.

105

Following is an example of a program that would create the Example
8.1 stack operation.

Example 8.2: Basic Stack Operation

Program
Counter Label Instruction

PC1 Jump to Subroutine 1

 •

 •

 •

 SUB1 ________________

PC2 Jump to Subroutine 2

 •

 •

 •

 •

 SUB2 ________________

PC3 Jump to Subroutine 3

 •

 •

 •

 •

 SUB3 ________________

106

This is known as subroutine nesting and is often encountered in solving
complex control equations.

To correctly use the stack for this type of operation requires a jump to
subroutine and a return from subroutine instruction.

8.1 JSR – JUMP TO SUBROUTINE

This instruction transfers control of the program counter to a subroutine
location but leaves a return pointer on the stack to allow the user to return
to perform the next instruction in the main program after the subroutine
is complete. To accomplish this, JSR instruction stores the program counter
address which points to the last byte of the jump instruction onto the stack
using the stack pointer. The stack byte contains the program count high
first, followed by program count low. The JSR then transfers the addresses
following the jump instruction to the program counter low and the
program counter high, thereby directing the program to begin at that
new address.

The symbolic notation for this is:
PC + 2↓, (PC + 1) → PCL, (PC + 2) → PCH.

The JSR instruction affects no flags, causes the stack pointer to be
decremented by 2 and substitutes new values into the program counter
low and the program counter high. The addressing mode for the JSR is
always Absolute.

Example 8.3 gives the details of a JSR instruction.

Example 8.3: Illustration of JSR instruction

Program Memory
PC Data

0100 JSR
0101 ADL
0102 ADH Subroutine

Stack Memory

Stack
Pointer Stack

01FD
01FE 02
01FF 03

107

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch
Instruction

Finish Previous
Operation; Increment
PC to 0101

2 0101 New ADL Fetch New ADL Decode JSR;
Increment PC to 0102

3 01FF Store ADL

4 01FF PCH Store PCH Hold ADL, Decrement S
to 01FE

5 01FE PCL Store PCL Hold ADL, Decrement S
to 01FD

6 0102 ADH Fetch ADH Store Stack Pointer

7 ADH, ADL New OP
CODE

Fetch New
OP CODE

ADL → PCL
ADH → PCH

 *S Denotes “Stack Pointer.”

In this example, it can be seen that during the first cycle the
microprocessor fetches the JSR instruction. During the second cycle,
address low for new program counter low is fetched. At the end of cycle
2, the microprocessor has decoded the JSR instruction and holds the
address low in the microprocessor until the stack operations are complete.

NOTE: The stack is always stored in Page 1 (Hex address 0100–01FF).

The operation of the stack in the MCS650X microprocessor is such that
the stack pointer is always left pointing at the next memory location into
which data can be stored. In Example 8.3, the stack pointer is assumed
to be at 01FF in the beginning and PC at location 0100. During the third
cycle the microprocessor puts the stack pointer onto the address lines and
on the fourth writes the contents of the current value of the program
counter high, 01, into the memory location indicated by the stack pointer
address. During the time that the write is being accomplished, the stack
pointer is being automatically decremented by 1 to 01FE. During the fifth
cycle the PCL is stored in the next memory location with the stack pointer
being automatically decremented.

It should be noted that the program counter low, which is now stored in
the stack, is pointing at the last address in the JSR sequence. This is not
what would be expected as a result of a JSR instruction. It would be
expected that the stack points at the next instruction. This apparent
anomaly in the machine is corrected during the Return from Subroutine
instruction.

108

Note: At the end of the JSR instruction, the values on the stack contain the
program counter low and the program counter high which referenced the
last address of the JSR instruction. Any subroutine calls which want to use
the program counter as an intermediate pointer must consider this fact. It
should be noted also that the Return from Subroutine instruction performs
an automatic increment at the end of the RTS which means that any
program counters which are substituted on the stack must be 1 byte or 1
pointer count less than the program count to which the programmer
expects the RTS to return.

The advantage of delaying the accessing of the address high until after
the current program counter can be written in the stack is that only the
address low has to be stored in the microprocessor. This has the effect of
shortening the JSR instruction by 1 byte and also minimizing internal
storage requirements.

After both program counter low and high have been transferred to the
stack, the program counter is used to access the next byte which is the
address high for the JSR. During this operation, the sixth cycle, internally
the microprocessor is storing the stack pointer which is now pointing at
01FD or the next location at which memory can be loaded.

During the seventh cycle the address high from the data bus and the
address low stored in the microprocessor are transferred to the new
program counter and are used to access the next OP CODE, thus making
JSR a 6-cycle instruction.

At the completion of the subroutine the programmer wants to return to the
instruction following the Jump-to-Subroutine instruction. This is
accomplished by transferring the last 2 stack bytes to the program
counter which allows the microprocessor to resume operations at the
instruction following the JSR, and it is done by means of the RTS instruction.

8.2 RTS – RETURN FROM SUBROUTINE

This instruction loads the program count low and program count high from
the stack into the program counter and increments the program counter
so that it points to the instruction following the JSR. The stack pointer is
adjusted by incrementing it twice.

The symbolic notation for the RTS is PC↑, INC PC.

109

The RTS instruction does not affect any flags and affects only PCL and
PCH. RTS is a single-byte instruction and its addressing mode is Implied.

The following Example 8.4 gives the details of the RTS instruction. It is the
complete reverse of the JSR shown in Example 8.3.

Example 8.4: Illustration of RTS instruction

Program Memory
PC Data

0300 RTS
0301 ?

Stack Memory

Stack Pointer Stack
01FD ?
01FE 02
01FF 01

Return from Subroutine (Example)

Cycle Address

Bus
Data
Bus

External
Operation

Internal
Operation

1 0300 OP CODE Fetch OP CODE Finish Previous
Operation, 0301 → PC

2 0301 Discarded
Data

Fetch Discarded
Data

Decode RTS

3 01FD Discarded
Data

Fetch Discarded
Data

Increment Stack Pointer
to 01FE

4 01FE 02 Fetch PCL Increment Stack Pointer
to 01FF

5 01FF 01 Fetch PCH

6 0102 Discarded
Data

Put Out PC Increment PC by 1 to
0103

7 0103 Next OP
CODE

Fetch Next OP
CODE

As we can see, the RTS instruction effectively unwinds what was done to

the stack in the JSR instruction. Because RTS is a single-byte instruction it

wastes the second memory access in doing a look-ahead operation.

110

During the second cycle the value located at the next program address

after the RTS is read but not used in this operation. It should be noted

that the stack is always left pointing at the next empty location, which

means that to pull off the stack, the microprocessor has to wait 1 cycle

while it adds 1 to the stack address. This is done to shorten the interrupt

sequence which will be discussed below; therefore, cycle 3 is a dead

cycle in which the microprocessor fetches but does not use the current

value of the stack and, like the fetch of address low on Indexed and Zero

Page Indexed operations, does nothing other than initialize the

microprocessor to the proper state. It can be seen that the stack pointer

decrements as data is pushed on to the stack and increments as data is

pulled from the stack. In the fourth cycle of the RTS, the microprocessor

puts out the 01FE address, reads the data stored there which is the

program count low which was written in the second write cycle of the JSR.

During the fifth cycle, the microprocessor puts out the incremented stack

picking up the program count high which was written in the first write cycle

of the JSR.

As is indicated during the discussions of JSR, the program counter stored

on the stack really points to the last address of the JSR instruction itself;

therefore, during the sixth cycle the RTS causes the program count from

the stack to be incremented. That is the only purpose of the sixth cycle.

Finally, in the seventh cycle, the incremented program counter is used to

fetch the next instruction; therefore, RTS takes 6 cycles.

Because every subroutine requires 1 JSR followed by 1 RTS, the time to

jump to and return from a subroutine is 12 cycles.

In the previous 2 examples, we have shown the operations of the JSR

located in location 100 and the RTS located in location 300. The following

pictorial diagram, Example 8.5, illustrates how the memory map for this

operation might look:

111

Example 8.5: Memory map for RTS instruction

Address
Bus

Data

100 JSR
101 04
102 02
103 Next Instruction

0204 First Instruction of Subroutine

0300 RTS

With this capability of subroutining, the microprocessor allows the
programmer to go from the main program to 1 subroutine, to the second
subroutine, to a third subroutine, then finally working its way back to the
main program. Example 8.6 is an expansion of Example 8.2 with the
returns included.

Example 8.6: Expansion of RTS memory map

Main Program

112

This concept is known as nesting of subroutines, and the number of

subroutines which can be called and returned from in such a manner is

limited by only the length of the stack.

8.3 IMPLEMENTATION OF STACK IN MCS6501 THROUGH

 MCS6505

As we have seen, the primary requirement for the stack is that irrespective

of where or when a stack operation is called, the microprocessor must

have an independent counter or register which contains the current

memory location value of the stack address. This register is called the

Stack Pointer, S. The stack becomes an auxiliary field in memory which is

basically independent of programmer control. We will discuss later how

the stack pointer becomes initialized, but once it is initialized, the primary

requirement is that it be self-adjusted; in other words, operations which

put data on the stack cause the pointer to be decremented automatically;

operations which take data off from the stack cause the pointer to be

incremented automatically. Only under rare circumstances should the

programmer find it necessary to move his stack from one location to

another if he is using the stack as designed.

On this basis, there is no need for a stack to be longer than 256 bytes.

To perform a single subroutine call takes only 2 bytes of stack memory.

To perform an interrupt takes only 3 bytes of stack memory. Therefore,

with 256 bytes, one can access 128 subroutines deep or interrupt

ourselves 85 times. Therefore the length of the stack is extremely unlikely

to be limiting. The MCS650l through MCS6505 have a 256-byte stack

length.

Figure 8.1, which is now the complete block diagram, shows all of the

microprocessor registers. The 8-bit stack pointer register, S, has been

added. It is initialized by the programmer and thereafter automatically

increments or decrements, depending on whether data is being put on to

the stack or taken off the stack by the microprocessor under control of

the program or the interrupt lines.

113

Block Diagram of MCS650X Including Stack Pointer, S

FIGURE 8.1

The primary purpose of the stack is to furnish a block of memory locations

in which the microprocessor can write data such as the program counter

for use in later processing. In many control systems the requirements for

Read/Write memory are very small and the stack just represents another

demand on Read/Write memory. Therefore these applications would like

the stack to be in the Page Zero location in order that memory allocation

for the stack, the Zero Page operations, and the indirect addresses can

be performed, therefore, one of the requirements of a stack is that it be

easily locatable into Page Zero.

On the other hand, if more than 1 page of RAM is needed because of

the amount of data that must be handled by the user programs, having

the stack in Page Zero is an unnecessary waste of Page Zero memory in

the sense that the stack can take no real advantage of being located in

Zero Page, whereas other operations can.

114

In each of the examples, the stack has been located at high order address

01 followed by a low order address. In the same manner as the

microprocessor forces locations 00 on to the high order 8 bits of the

address lines for Zero Page operations, the microprocessor automatically

puts 01 Hex on to the high order 8-bit address lines during each stack

operation. This has the advantage to the user of locating the stack into

Page One of memory which would be the next memory location added

if the Zero Page operation requirements exceed Page Zero memory

capacity. This has the advantage of the stack not requiring memory to be

added specifically for the stack but only requiring the allocation of

existing memory locations. It should be noted that the selected addressing

concepts of the MCS650X microprocessor support devices would involve

connecting the memories such that bit 8, which is the selection bit for the

Page One versus Page Zero, is a “don't care” for operations in which the

user does not need more than 1 page of Read/Write memory. This gives

the user the effect of locating stack in rage Zero for those applications.

The second feature that should be noted from the examples is that the

stack was located at the end of Page One and decremented from that

point towards the beginning of the page. This is the natural operation of

the stack. RAM memory comes in discrete increments, 64, 128, 256 bytes

so the normal method of allocating stack addressing is for the user to

calculate the number of bytes probably needed for stack access. This

could be done by analyzing the number of subroutines which might be

called and the amount of data which might be put onto the stack in order

to communicate between subroutines or the number of interrupts plus

subroutines which might occur with the respective data that would be

stored on the stack for each of them. By counting 3 bytes for each

interrupt, 2 bytes for each jump to subroutine, plus 1 byte for each

programmer-controlled stack operation, the microprocessor designer can

estimate the amount of memory which must be allocated for the stack.

This is part of his decision-making process in deciding how much memory

is necessary for his whole program.

Once the allocation has been made, it is recommended that the user

assign his working storage from the beginning of memory forward and

always load his stack at the end of either Page Zero, Page One, or at

the end of his physical memory which is located in one of those locations.

115

This will give the effect of having the highest bytes of memory allocated

to the stack, lower bytes of memory allocated to user working storage

and hopefully the two shall never overlap.

It should be noted that the natural operation of the stack, which often is

called by hardware not totally under program control, is such that it will

continue to decrement throughout the page to which it is allocated

irrespective of the user's desire to have it do so. A normal mistake in

allocation in memory can result in the user writing data into a memory

location and later accessing it with another subroutine or another part of

his program, only to find that the stack has very carefully written over

that area as the result of its performing hardware control operations. This

is one of the more difficult problems to diagnose. If this problem is

suspected by the programmer, he should analyze memory locations

higher than unexplained disturbed locations.

There is a distinctive pattern for stack operations which are unique to the

user's program but which are quite predictable. An analysis of the value

which has been destroyed will often indicate that it is part of an address

which would normally be expected during the execution of the program

between the time data was stored and the time it was fetched. This is a

very strong indication of the fact that the stack somehow or other did get

into the user's program area. This is almost always caused by improper

control of interrupt lines or unexpected operations of interrupt or

subroutine calls and has only 2 solutions: (1) If the operation is normal

and predictable, the user must assign more memory to his program and

particularly reassign his memory such that the stack has more room to

operate; or (2) if the operation of the interrupt lines is not predictable,

attention must be given to solving the hardware problem that causes this

type of unpredictable operation.

8.3.1 Summary of Stack Implementation

The MCS6501 through MCS6505 microprocessors have a single 8-bit
stack register. This register is automatically incremented and
decremented under control of the microprocessor to perform stack
manipulation operations, under direction of the user program or the
interrupt lines. Once the programmer has initialized the stack pointer to

116

the end of whatever memory he wants the stack to operate in, the
programmer can ignore stack addressing other than in those cases where
there is an interference between stack operations and his normal
program working space.

In the MCS6501 through MCS6505, the stack is automatically located in
Page One. The microprocessor always puts out the address 0100 plus
stack register for every stack operation. By selected memory techniques,
the user can either locate the stack in Page Zero or Page One, depending
on whether or not Page One exists for his hardware.

8.4 USE OF THE STACK BY THE PROGRAMMER

Discussed in Section 8.1 was the use of the JSR to call a subroutine.
However, not indicated was the technique by which the subroutine knew
which data to operate on. There are 3 classical techniques for
communicating data between subroutines. The first and most
straightforward technique is that each subroutine has a defined set of
working registers located in the Page Zero in which the user has left
values to be operated on by the subroutine. The registers can either
contain the values directly or can contain indirect pointers to addresses
to values which would be operated on. The following example shows the
combination of these:

Example 8.7: Call-a-move subroutine using preassigned memory
 locations

Location 10 = Count
Location 11, 12 = Base from Address
Location 13, 14 = Base to Address

Main Line Routine
No. of Bytes Instruction Comment

2 LDA #COUNT – 1 Load Fixed Value for the Move
2 STA 10
2 LDA #FRADH

Setup “FROM” Pointer
2 STA 12
2 LDA #FRADL
2 STA 11
2 LDA #TOADL
2 STA 13
2 LDA #TOADH

Setup “TO” Pointer
2 STA 14
3 JSR SUB1

 23 bytes

117

Subroutine Coding

No. of Bytes Label Instruction

2 SUB1 LDY 10
2 LOOP LDA (11), Y
2 STA (13), Y
1 DEY
2 BNE LOOP
1 RTS

Total 33 bytes

As has been previously developed, the loop time is the overriding
consideration rather than setup time for a large number of executions.

It can be seen that we have used the techniques developed in previous
sections of the indirect referencing, the jump to subroutine and the return
from subroutine to perform this type of subroutine value communication.
In this operation, there was no use of the stack except for the program
counter value.

A second form of communication is the use of the stack itself as an
intermediate storage for data which is going to be communicated to the
subroutine. In order for the programmer to use the stack as an
intermediate storage, he needs instructions which allow him to put data
on the stack and to read from the stack. These instructions are known as
push and pull instructions.

8.5 PHA – PUSH ACCUMULATOR ON STACK

This instruction transfers the current value of the accumulator to the next
location on the stack, automatically decrementing the stack to point to the
next empty location.

The symbolic notation for this operation is A↓. Noted should be that the

notation ↓ means push to the stack, ↑ means pull from the stack.

Push A instruction only affects the stack pointer register which is
decremented by 1 as a result of the operation. It affects no flags.

PHA is a single-byte instruction and its addressing mode is Implied.

The following example shows the operations which occur during Push A
instruction.

118

Example 8.8: Operation of PHA, assuming stack at 01FF

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch Instruction Finish Previous
Operation, Increment
PC to 0101

2 0101 Next
OP CODE

Fetch Next
OP CODE
and discard

Interpret PHA
Instruction, Hold P-
Counter

3 01FF (A) Write A on
Stack

Decrement Stack Pointer
to 01FE

4 0101 Next
OP CODE

Fetch Next
OP CODE

As can be seen, the PHA takes 3 cycles and takes advantage of the fact

that the stack pointer is pointing to the correct location to write the value

of A. As a result of this operation, the stack pointer will be sitting at 01FE.

The notation (A) implies contents of A. Now that the data is on the stack,

later on in the program the programmer will call for the data to be

retrieved from the stack with a PLA instruction.

8.6 PLA – PULL ACCUMULATOR FROM STACK

This instruction adds 1 to the current value of the stack pointer and uses it
to address the stack and loads the contents of the stack into the A register.

The symbolic notation for this is A↑.

The PLA instruction does not affect the carry or overflow flags. It sets N
if the bit 7 is on in accumulator A as a result of instructions, otherwise it is
reset. If accumulator A is zero as a result of the PLA, then the Z flag is set,
otherwise it is reset. The PLA instruction changes content of the
accumulator A to the contents of the memory location at stack register
plus 1 and also increments the stack register.

The PLA instruction is a single-byte instruction and the addressing mode is
Implied.

In the following example, the data stored on the stack in Example 8.8 is
transferred to the accumulator.

119

Example 8.9: Operation of PLA stack from Example 8.8

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0200 PLA Fetch Instruction Finish Previous Operation,
Increment PC to 0101

2 0201 Next
OP CODE

Fetch Next
OP CODE and
Discard

Interpret Instruction, Hold
P-Counter

3 01FE Read Stack Increment Stack Pointer to
01FF

4 01FF (A) Fetch A Save Stack

5 0201 Next
OP CODE

Fetch Next
OP CODE

M → A

When taking data off the stack, there is 1 extra cycle during which time
the current contents of the stack register are accessed but not used and
the stack pointer is incremented by 1 to allow access to the value that
was previously stored on the stack. The stack Pointer is left pointing at
this location because it is now considered to be an empty location to be
used by the stack during a subsequent operation.

8.7 USE OF PUSHES AND PULLS TO COMMUNICATE VARIABLES
 BETWEEN SUBROUTINE OPERATIONS

In Example 8.10, we perform the same operation as we did in Example
8.7; only here, instead of using fixed locations to pick up the pointers, we
are going to use the stack as a communications vehicle:

Example 8.10: Call-a-move subroutine using the stack to communicate

 Location 11, 12 = Base “FROM” Address
 Location 13, 14 = Base “TO” Address

Main Line Routine
Bytes Instruction

2 LDA #COUNT –1
1 PHA
2 LDA # FRADL
1 PHA
2 LDA #FRADH
1 PHA
2 LDA #TOADL
1 PHA
2 LDA #TOADH
1 PHA
3 JSR SUB1

18

120

Subroutine

Bytes

Label Instruction Comments

2 SUB1 LDX 6
1 LOOP1 PLA
2 STA 10, X
1 DEX Move Stack to Memory
2 BNE LOOP1
1 PLA Set Up Count
1 TAY
2 LOOP2 LDA (11), Y
2 STA (13), Y Move Memory Location
1 DEY
2 BNE LOOP2
2 LDA 15
1 PHA

Restore PC to Stack
2 LDA 16
1 PHA
1 RTS

Total 42 Bytes

We can see from this example that using the stack as a communication
vehicle actually increases the number of bytes in the subroutine and the
total bytes overall. However, the only time one should be using
subroutines in this case is when the subroutine is fairly long and the number
of times the subroutine is used is fairly frequent. This technique does
reduce the number of bytes in the calling sequence. The calling sequence
is normally repeated once for every time the instruction is called;
therefore the use of the stack to communicate should result in a net
reduction in the number of bytes used in the total program.

Up until this time, we have been considering that the stack is at a fixed
location and that all stack references use the stack pointer. It has not been
explained how the stack pointer in the microprocessor gets loaded and
accessed. This is done through communication between the stack pointer
and index register X.

8.8 TXS – TRANSFER INDEX X TO STACK POINTER

This instruction transfers the value in the index register X to the stack
pointer.

Symbolic Notation is X → S

TXS changes only the stack pointer, making it equal to the content of the
index register X. It does not affect any of the flags.

121

TXS is a single-byte instruction and its addressing mode is Implied.

Another application for TXS is the concept of passing parameters to the
subroutine by storing them immediately after the jump to subroutine
instruction.

In Example 8.11, the from and to address, plus the count of number of
values would be written right after the JSR instruction and its address.

By locating the stack in Page Zero, the address of the last byte of the
JSR can be incremented to point at the parameter bytes and then used
as an indirect pointer to move the parameter to its memory location.

The key to this approach is transferring the stack pointer to X which allows
the program to operate directly on the address while it is in the stack.

It should be noted that this approach automatically leaves the address
on the stack, positioned so that the RTS picks up the next OP CODE
address.

Example 8.11: Jump to subroutine (JSR) followed by parameters

Address Bus Data

0100 JSR
0101 ADL
0102 ADH
0103 To High
0104 To Low
0105 From High
0106 From Low
0107 Count
0108 Next OP CODE

Before concluding this discussion on subroutines and parameter passing,
one should again note the use of subroutines should be limited to those
cases where the user expects to duplicate code of significant length
several times in the program. In these cases, and only in these cases, is
subroutine call warranted rather than the normal mode of knowing the
addresses and specifying them in an instruction. In all cases where timing
is of significant interest, subroutines should also be avoided. Subroutines
add significantly to the setup and execution time of problem solution.
However, subroutines definitely have their place in microcomputer code
and there have been presented 3 alternatives for use in application
programs. The user will find a combination of the above techniques most
useful for solving his particular problem.

122

8.9 TSX – TRANSFER STACK POINTER TO INDEX X

This instruction transfers the value in the stack pointer to the index register
X.

Symbolic notation is S → X.

TSX does not affect the carry or overflow flags. It sets N if bit 7 is on in
index X as a result of the instruction, otherwise it is reset. If index X is zero
as a result of the TSX, the Z flag is set, otherwise it is reset. TSX changes
the value of index X, making it equal to the content of the stack pointer.

TSX is a single-byte instruction and the addressing mode is Implied.

8.10 SAVING OF THE PROCESSOR STATUS REGISTER

During the interrupt sequences, the current contents of the processor status
register (P) are saved on the stack automatically. However, there are
times in a program where the current contents of the P register must be
saved for performing some type of other operation. A particular
example of this would be the case of a subroutine which is called
independently and which involves decimal arithmetic. It is important that
the programmer keeps track of the arithmetic mode the program is in at
all times. One way to do this is to establish the convention that the machine
will always be in binary or decimal mode, with every subroutine changing
its mode being responsible for restoring it back to the known state. This
is a superior convention to the one that is about to be described.

A more general convention would be one in which the subroutine that
wanted to change modes of operation would push P onto the stack, then
set the decimal mode to perform the subroutine and then pull P back from
the stack prior to returning from the subroutine.

Instructions which allow the user to accomplish this are as follows:

8.11 PHP – PUSH PROCESSOR STATUS ON STACK

This instruction transfers the contents of the processor status register
unchanged to the stack, as governed by the stack pointer.

Symbolic notation for this is P1.

The PHP instruction affects no registers or flags in the microprocessor.

PHP is a single-byte instruction and the addressing mode is Implied.

123

8.12 PLP – PULL PROCESSOR STATUS FROM STACK

This instruction transfers the next value on the stack to the Processor Status

register, thereby changing all of the flags and setting the mode switches

to the values from the stack.

Symbolic notation is ↑P.

The PLP instruction affects no registers in the processor other than the

status register. This instruction could affect all flags in the status register.

PLP is a single-byte instruction and the addressing mode is Implied.

8.13 SUMMARY OF THE STACK

The stack in the MCS650X family is a push-down stack implemented by

a processor register called the stack pointer which the programmer

initializes by means of a Load X immediately followed by a TXS

instruction and thereafter is controlled by the microprocessor which loads

data into memory based on an address constructed by adding the

contents of the stack pointer to a fixed address, Hex address 0100. Every

time the microprocessor loads data into memory using the stack pointer,

it automatically decrements the stack pointer, thereby leaving the stack

pointer pointing at the next open memory byte. Every time the

microprocessor accesses data from the stack, it adds 1 to the current value

of the stack pointer and reads the memory location by putting out the

address 0100 plus the stack pointer. The status register is automatically

pointing at the next memory location to which data can now be written.

The stack makes an interesting place to store interim data without the

programmer having to worry about the actual memory location in which

data will be directly stored.

There are 8 instructions which affect the stack. They are: BRK, JSR, PHA,

PHP, PLA, PLP, RTI and RTS.

BRK and RTI involve the handling of the interrupts.

124

CHAPTER 9

RESET AND INTERRUPT CONSIDERATIONS

9.0 VECTORS

Before developing the concepts of how the MCS650X Microprocessors

handle interrupts and start-up, a brief definition of the concept of vector

pointers needs to be developed.

In the sections on Jumps and Branches, it was always assumed that the

program counter is changed by the microprocessor under control of the

programmer while accessing addresses which were in program sequence.

In order to get the microprocessor started and in order to properly

handle external control or interrupt, there has been developed a

different way of setting the program counter to point at a specific

location. This concept is called vectored pointers. A vector pointer consists

of a program counter high and program counter low value which, under

control of the microprocessor, is loaded in the program counter when

certain external events occur. The word vector is developed from the fact

that the microprocessor directly controls the memory location from which

a particular operation will fetch the program counter value and hence

the concept of vector.

By allowing the programmer to specify the vector address and then by

allowing the programmer to write coding that the address points to, the

microprocessor makes available to the programmer all of the control

necessary to develop a general purpose control program. The

microprocessor has fixed address in memory from which it picks up the

vectors. By this implementation, minimum hardware in the microprocessor

125

is obtained. Locations FFFA through FFFF are reserved for vector pointers

for the microprocessor. Into these locations are stored respectively the

interrupt vectors or pointers for: non-maskable interrupt, reset and

interrupt request.

9.1 RESET OR RESTART

In the microprocessor, there is a state counter which controls when the

microprocessor is going to use the program counter to access memory to

pick up an instruction, then after the instruction is loaded, the

microprocessor goes through a fixed sequence of interpreting instructions

and then develops a series of operations which are based on the OP

CODE decoding.

Up to this point, it has been assumed that the program counter was set at

some location and that all program counter changes are then directed by

the program once the program counter had been initialized.

Instructions exist for the initialization and loading of all other registers in

the microprocessor except for the initial setting of the program counter.

It is for this initial setting of the program counter to a fixed location in the

restart vector location specified by the microprocessor programmer that

the reset line in the microprocessor is primarily used.

The reset line is controlled during power on initialization and is a common

line which is connected to all devices in the microcomputer system which

have to be initialized to a known state. The initialization of most I/O

devices is such that they are brought up in a benign state such that with

minimum coding in the microcomputer, the programmer can configure and

control the I/O in an orderly fashion.

The concept has important systems implications in systems where damage

can be done if peripheral devices came up in unknown states. Therefore,

in the MCS650X, power on or reset control operates at two levels.

126

First, by holding of an external line to ground, and having this external

line connected to all the devices during power up transient conditions, the

entire microcomputer system is initialized to a known disabled state.

Second, the releases of the reset line from the ground or TTL zero

condition to a TTL one condition causes the microprocessor to be

automatically initialized, first by the internal hardware vector which

causes it to be pointed to a known program location, and secondly

through a software program which is written by the user to control the

orderly start-up of the microcomputer system.

All of the MCS650X family parts also obey a discipline that while the

reset line is low, the system is in a stop or reset state. The microprocessor

is guaranteed to be in a Read state and upon release of the reset line

from ground to positive, the microprocessor will continue to hold the line

in a Read state until it has addressed the specified vectored count

location, at which time control of the microprocessor is available to the

programmer.

NOTE: The MC6800 family also follows this convention.

9.2 START FUNCTION

While the reset line is in the low state, it can be assumed that internal

registers may be initialized to any random condition; therefore, no

conditions about the internal state of the microprocessor are assumed

other than that the microprocessor will, one cycle after the reset line goes

high, implement the following sequence:

127

Example 9.1: Illustration of Start Cycle

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 ? ? Don’t Care Hold During Reset

2 ? + 1 ? Don’t Care First Start State

3 0100 + SP ? Don’t Care Second Start State

4 0100 + SP–1 ? Don’t Care Third Start State

5 0100 + SP–2 ? Don’t Care Fourth Start State

6 FFFC Start PCL Fetch First Vector

7 FFFD Start PCH Fetch Second Vector Hold PCL

8 PCH PCL First
OP CODE

Load First OP CODE

The start cycle actually takes seven cycles from the time the reset line is
let go to TTL plus. On the eighth cycle, the vector fetched from the memory
location FFFC and FFFD is used to access the next instruction. The
microprocessor is now in a normal program load sequence, the location
where the vector points should be the first OP CODE which the
programmer desires to perform.

The second point that should be noted is that the microprocessor actually
accesses the stack three times during the start sequence in cycles 3, 4 and
5. This is because the start sequence is in effect a specialized form of
interrupt with the exception that the read/write line is disabled so that
no writes to stack are accomplished during any of the cycles.

9.3 PROGRAMMER CONSIDERATIONS FOR INITIALIZATION

 SEQUENCES

There are two major facts to remember about initialization. One, the only

automatic operations of the microprocessor during reset are to turn on

the interrupt disable bit and to force the program counter to the vector

location specified in locations FFFC and FFFD and to load the first

instruction from that location. Therefore, the first operation in any normal

program will be to initialize the stack. This should be done by having

previously decided what the stack value should he for initial operations

and then doing a LDX immediate of this value followed by a TXS. By this

simple operation, the microprocessor is ready for any interrupt or non-

maskable interrupt operation which might occur during the rest of the

start-up sequence.

128

Once this is accomplished, the two non-variable operations of the machine

are under control. The program counter is initialized and under

programmer control and the stack is initialized and under program

control. The next operations during the initialization sequences will consist

of configuring and setting up the various control functions necessary to

perform the I/O desired for the microprocessor.

Specific discussion for considerations regarding the start-up are covered

in Section 11.

The major things which have to be considered include the current state of

the I/O device and the non-destructive operations that will allow the state

to be changed to the active state.

The initialization programs mostly consist of loading accumulator A

immediately with a bit pattern and storing it in the data control register

of an I/O device.

Note: The interrupt disable is automatically set by the microprocessor

 during the start sequence. This is to minimize the possibility of a

 series of interrupts occurring during the start-up sequence

 because of uncontrolled external values although it is usually

 possible to control interrupts as part of the configuration.

The programmer should consider two effects. First, that the non maskable

interrupt is not blockable by this technique since it would be possible to

configure a device that was connected to a non maskable interrupt and

have to service the interrupt immediately. Secondly, the mask must be

cleared at the end of the start sequence unless the user has specific reason

to inhibit interrupts after he has done the start-up sequence. Therefore,

the next to last instruction of the start-up sequence should be CLI.

It should be noted that the start-up routine is a series of sequential

operations which should occur only during power on initialization and is

the first step in the programmed logic machine.

129

Because the execution of the routine during power on occurs very seldom

in the normal operation of the machine, the coding for power on sequence

should tend to minimize the use of memory space rather than speed.

The last instruction in the start-up sequence should initialize the decimal

mode flag to the normal setting for the program.

The next instruction should be the beginning of the user's normal

programming for his device, everything preceding that being known as

“housekeeping.”

9.4 RESTART

It should be noted that the basic microprocessor control philosophy allows

for a single common reset line which initializes all devices. This line can

be used to clear the microprocessor to a known state and to reset all

peripherals to a known state; therefore, it can be used as a result of

power interruption, during the power on sequence, or as an external clear

by the user to re-initialize the system.

As discussed in the hardware manual, restart is often used as an aid to

making sure the microprocessor has been properly interconnected and

that programs have been loaded in the correct locations.

9.5 INTERRUPT CONSIDERATIONS

Up until this point, the microprocessor has to proceed under programmer

control through a variety of sequences. The only way for the programmer

to change the sequence of operations of the microprocessor was to

change the program counter location to point at new operations. The

microprocessor is in control of fetching the next instruction at the conclusion

of the current instruction. The only way that external events could control

the microprocessor, if it were not for interrupts, would be for the

programmer to periodically interrupt or stop processing data and check

to see whether or not an external event which might cause him to change

his direction has occurred. The problem with this technique is that I/O

130

events are usually asynchronous, i.e., not timed with the microprocessor

internal instructions, therefore, it would be possible for the event to occur

shortly after the programmer has stopped to look at I/O events which

would mean that the event would not be sampled until the programmer

took the time to stop his coding and sample again.

because the sampling of I/O devices normally takes several byte counts

or cycles to accomplish, the frequent insertion of checking routines into

straight line code results in significant delays to the entire program. In

trying to use this technique, there has to be a trade-off between the fact

that the program wastes a significant amount of time checking events

which have not yet occurred versus delaying checking of an event which

has occurred and if not timely serviced the data may be lost.

In order to solve this dichotomy, the concept of interrupt is used to signal

the microprocessor that an external event has occurred and the

microprocessor should devote attention to it immediately. This technique

accomplishes processing in which the microprocessor's program is

interrupted and the event that caused the interrupt is serviced.

Transferring most of data and control to I/O devices in an interrupt driven

environment will usually result in maximum program and/or programmer

efficiency. Each event is serviced when it occurs which means there is a

minimum amount of delaying in servicing events, also a minimum amount

of coding because of elimination of the need to determine occurrence of

several events simultaneously; each interrupting event is handled as a

unique combination. It is possible to interrupt an interrupt processing

routine and, therefore, all the interrupt logic uses the stack which allows

processing of successive interrupts without any penalty other than

increasing the stack length.

A real world example of an event which should interrupt is when the user

is given a panic button indicating to the microcomputer some event has

occurred which requires total immediate attention of the microprocessor

to solving that problem.

131

The action and events are as follows: The microprocessor user pushes the

panic button; the panic switch sensor causes an external device to indicate

to the microprocessor an interrupt is desired; the microprocessor checks

the status of the internal interrupt inhibit signal; if the internal inhibit is set,

then the interrupt is ignored. However, if it is reset or when it becomes

reset through some program reaction, the following set of operations

occur:

Example 9.2: Interrupt Sequence

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 PC OP CODE Fetch OP CODE Hold Program Counter,
Finish Previous
Operation

2 PC OP CODE Fetch OP Code Force a BRK Instruction,
Hold P-Counter

3 01FF PCH Store PCH on Stack Decrement Stack
Pointer to 01FE

4 01FE PCL Store PCL on Stack Decrement Stack
Pointer to 01FD

5 01FD P Store P on Stack Decrement Stack
Pointer to 01FC

6 FFFF New PCL Fetch Vector Low Put Away Stack

7 FFFF New PCH Fetch Vector High Vector Low →
PCL and Set I

8 Vector
PCH PCL

OP CODE Fetch Interrupt
Program

Increment PC to
PC + 1

As can be seen in Example 9.2, the microprocessor uses the stack to save

the reentrant or recovery code and then uses the interrupt vectors FFFE

and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt

request or a non maskable interrupt request had occurred. It should be

noted that the interrupt disable is turned on at this point by the

microprocessor automatically.

132

Because the interrupt disable had to be off for an interrupt request to

have been honoured , the return from interrupt which loads the processor

status from before the interrupt occurred has the effect of clearing the

interrupt disable bit. After the interrupt has been acknowledged by the

microprocessor by transferring to the proper vector location, there are a

variety of operations which the user can perform to service the interrupt;

however, all operations should end with a single instruction which

reinitializes the microprocessor back to the point at which the interrupt

occurred. This instruction is called the RTI instruction.

9.6 RTI – RETURN FROM INTERRUPT

This instruction transfers from the stack into the microprocessor the

processor status and the program counter location for the instruction which

was interrupted. By virtue of the interrupt having stored this data before

executing the instruction and the fact that the RTI reinitializes the

microprocessor to the same state as when it was interrupted, the

combination of interrupt plus RTI allows truly reentrant coding.

The symbolic notation for RTI is ↑P ↑PC.

The RTI instruction reinitializes all flags to the position to the point they

were at the time the interrupt was taken and sets the program counter

back to its pre-interrupt state. It affects no other registers in the

microprocessor.

RTI is a single byte instruction and its addressing mode is Implied.

In the following example, we can see the internal operation of the RTI

which restores the microprocessor:

133

Example 9.3: Return from Interrupt

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0300 RTI Fetch OP CODE Finish Previous
Operation, Increment
PC to 0301

2 0301 ? Fetch Next OP CODE Decode RTI

3 01FC ? Discarded Stack
Fetch

Increment Stack Pointer
to 01FD

4 01FD P Fetch P Register Increment Stack Pointer
to 01FE

5 01FE PCL Fetch PCL Increment Stack Pointer
to 01FF, Hold PCL

6 01FF PCH Fetch PCH M→PCL, Store Stack
Pointer

7 PCH PCL OP CODE Fetch OP CODE Increment New PC.

Note the effects of the extra cycle (3) necessary to read data from stack
which causes the RTI to take six cycles. The RTI has restored the stack,
program counter and status register to the point they were at before the
interrupt was acknowledged.

There is no automatic save of any of the other registers in the
microprocessor. Because the interrupt occurred to allow data to be
transferred using the microprocessor, the programmer must save the
various internal registers at the time the interrupt is taken and restore
them prior to returning from the interrupt. Saving of the registers is best
done on the stack as this allows as many consecutive interrupts as the
programming will allow for. Therefore, the routines which save all
registers and restore them are as follows:

Example 9.4: Illustration of Save and Restore for Interrupts

Cycle Bytes
3 1 SAVE PHA Save A
2 1 TXA Save X
3 1 PHA
2 1 TYA Save Y
3 1 PHA

13 5
4 1 RESTORE PLA Restore Y
2 1 TAY
4 1 PLA Restore X
2 1 TAX
4 1 PLA Restore A

16 5

134

The SAVE coding assumes that the programmer wants to save and to

restore registers A, X and Y. It should be noted that for many interrupts,

the amount of coding that has to be performed in the interrupt is fairly

small.

In this type of operation, it is usually more desirable to shorten the

interrupt processing time and not use all of the registers in the machine.

Therefore, a more normal interrupt processing routine would consist of

just saving registers A and X which means that the restore routine would

be just restore registers X and A. This has the effect of shortening the

interrupt routine by two bytes, and also shortens the restore routine by

two bytes and will cut 5 cycles out of the interrupt routine and 6 cycles

out of the restore routine.

This technique combined with automatic features of the interrupt and the

RTI allows multiple interrupts to occur with successive interrupts

interrupting the current interrupt. This is one of the advantages of the use

of the stack so that as many interrupts can interrupt other interrupts as

can be held in the stack. The stack contains six bytes for every interrupt

if all registers are saved, so 42 sequences of interrupts can be stored in

one page. However, in more practical situations, consecutive interrupts

hardly ever get more than about three deep.

The advantage of allowing an interrupt to interrupt an interrupt is that

the whole concept behind the interrupt is that asynchronous events can be

responded to as rapidly as possible; therefore, it is desirable to allow

the processing to service one interrupt to be interrupted to service the

second, as long as the first interrupt has been properly serviced.

To review how this is accomplished using the normal interrupt capability

of the MCS650X, it is important that we review the bus concept which is

inherent in the MCS6500 family and which is compatible with the M6800.

As has already been discussed, all I/O operations on this type of

microprocessor are accomplished by reading and writing registers which

actually represent connections to physical devices or to physical pins

which connect to physical devices.

135

Up until this point, this discussion has addressed itself to transferring of

data into and out of the microprocessor. However, there is a concept that

is inherent in the bus discipline that says that whenever an interrupt device

capable of generating an interrupt desires to accomplish an interrupt, it

performs two acts; first, it sets a bit, usually bit 7, in a register whose

primary purpose is to communicate to the microprocessor the status of the

device. The interrupting device causes one of perhaps many output lines

to be brought low. These collector-or’d outputs are connected together to

the IRQ pin on the MCS650X microprocessor.

The interrupt request to the MCS650X is the IRQ pin being at a TTL zero.

In order to minimize the handshaking necessary to accomplish an interrupt,

all interrupting devices obey a rule that says that once an interrupt has

been requested by setting the bit and pulling interrupt low, the interrupt

will be held by the device until the condition that caused the interrupt has

been satisfied. This allows several devices to interrupt simultaneously and

also allows the microprocessor to ignore an interrupt until it is ready to

service it. This ignoring is done by the interrupt disable bit which can be

set on by the programmer and is initialized on by the interrupt sequence

or by the start sequence.

Once the interrupt line is low and interrupt disable is off, the

microprocessor takes an interrupt which sets on the interrupt disable. The

interrupt disable then keeps the input low line from causing more than

one interrupt until an interrupt has been serviced. There is no other

handshaking between the microprocessor and the interrupting device

other than the collector-or’d line. This means that the microprocessor must

use the normal addressing registers to determine which of several

collector-or’d devices caused the line to go low and to process the

interrupt which has been requested.

136

Once the processor has found the interrupting device by means of

analyzing status bits which indicates an interrupt has been requested, the

microprocessor then clears the status by reading or writing data as

indicated by the status register.

It should be noted that a significant difference between status registers

and data registers in I/O devices is that status registers are never cleared

by being read, only by being written into or by the microprocessor

transferring data from a data register which corresponds to some status

in the status register. Detailed examples of this interaction are discussed

in Chapter 11. The clearing of the status register also releases the

collector-or'd output thereby releasing the interrupt pin request.

The basic interaction between the microprocessor and interrupting device

is when interrupting device sets the status bit and brings its output IRQ

line low. If its output IRQ line is connected to the microprocessor interrupt

request line, the microprocessor waits until the interrupt disable is cleared,

takes the interrupt vector, and sets the interrupt disable which inhibits

further interrupts in the IRQ line. The microprocessor determines which

interrupting device is causing an interrupt and transfers data from that

device.

Transferring of data clears the interrupt status and the IRQ pin. At this

point, the programmer could decide that he was ready to accept another

interrupt even though the data may have been read but not yet operated

on. Allowing interrupts at this point, gives the most efficient operation of

the microprocessor in most applications.

There are also times when a programmer may be working on some

coding the timing of which is so important that he cannot afford to allow

an interrupt to occur. During these times, he needs to be able to turn on

the interrupt disable. To accomplish this, the microprocessor has a set and

clear interrupt disable capability.

137

9.7 SOFTWARE POLLING FOR INTERRUPT CAUSES

As was indicated above, any one of several devices are collector-or’d to

cause an IRQ. The effect of any one of the devices or combination of

them having polled the IRQ line low is always the same. The interrupt

stores the current status of the program counter and processor on the

stack and transfers to a fixed vector address. In servicing the interrupt, it

is important to save those registers which will be used in the analysis of

the interrupt and during the interrupt processing, so the normal first steps

of the interrupt routine are to do the SAFE procedures.

The next operation is to determine which of the various potential

interrupting devices caused the interrupt. To accomplish this, the

programmer should make use of the fact that all interrupting devices

signal the interrupt by a bit in the status register. All currently

implemented 6800 and 6500 peripherals always have interrupt

indicators; either bit 7 or bit 6 in their status register. Therefore, the basic

loop that a user will use to verify the existence of an interrupt on one of

five devices is as follows:

Example 9.5: Interrupt Polling

No of Bytes

Cycles

3 4 LDA Status 1

2 2 BMI FIRST

3 4 LDA Status 2

2 2 BMI SECOND

3 4 LDA Status 3

2 2 BMI THIRD

3 4 LDA Status 4

2 2 BMI FOURTH

3 4 LDA Status 5

2 2 BMI FIFTH

 RES1 JMP to RESTORE

 FIRST LDA DATA 1

 CLI

 Process 1

 etc.

138

In this example, the simplest case where the potential interrupts are

indicated by bit 7 being on, has been assumed. This allows advantage to

be taken of the free N-bit test by following the load of the first status

register with a branch on result minus. If the first device has an active

interrupt request, the BMI will be taken to FIRST where the data is

transferred. This automatically clears the interrupt for the first device. To

allow multiple interrupts, the load A is followed by the CLI instruction

which allows the program to accept another interrupt. As a result of the

CLI, one of two things can occur; there is not another interrupt currently

active, in which case, the microprocessor will continue to process the first

interrupt down to the point where the interrupt is complete and the first

subroutine does a jump to RESTORE, which is the routine that unsaves the

registers that were used in the process of servicing the interrupt. If another

device has an active interrupt which occurred either prior to the first

interrupt or subsequent to it but before the microprocessor has reached

the point where the CLI occurs, then the microprocessor will immediately

interrupt again following the CLI, go back and save registers as defined

before and come back into the polling loop. Therefore, multiple interrupts

are serviced in the order in which they are looked at in polling sequence.

Polling means that the program is asking each device individually whether

or not it is the one that requested an interrupt.

It should be noted that polling has the effect of giving perfect priority in

the sense that no matter which two interrupts occur before the

microprocessor gets to service one, the polling sequence always gives

priority to the highest priority device first, then the second, then the third,

etc. In light of the fact that this polling sequence requires no additional

hardware to implement other than is available in the interrupting devices

themselves, this is the least expensive form of interrupt and the one that

should be used whenever possible because of its independence from

external hardware.

139

Although it would appear that the last interrupting device in a sequence

pays a significant time penalty based on the amount of instructions to be

executed before the last device is serviced, the amount of time to perform

polls is only six cycles per device and, therefore, the extra penalty that

the last device has to pay over the first device is 24 cycles. This is in

comparison to a minimum time to cause an interrupt (eight cycles), plus

store time for registers (in the range of another 8 to 13 cycles) which

means that the delay to the last devices is roughly twice what it would be

for the first device.

This timing just described represents a most interesting part of the analysis

of interrupts for a microprocessor. There is a significant amount of fixed

overhead which must be paid for the interrupt. This overhead includes the

fact that the interrupts can only occur at the end of an instruction so,

therefore, if an interrupt occurs prior to the end of an instruction, the

microprocessor delays until the end of the instruction to service it.

Therefore, in doing the worst case analysis, one has to consider the fact

that the interrupt might be occurring in the middle of a seven cycle,

read/modify/write instruction which means that the worst case time to

process the first instruction in an interrupt sequence is 14 cycles (7 cycles

plus the 7 cycles for the interrupt).

In light of the fact that saving of additional registers is often required (at

least the accumulator A must be saved), at least twice the number of

cycles will be required. Consequently the absolute minimum worse case

time for an interrupt is 17 cycles plus the time to transfer data which is

another 4 cycles. Therefore interrupt driven systems must be capable of

handling a delay of at least 20 cycles and more realistically, 20 to 50

cycles before the first interrupt is serviced. This means that devices which

are running totally interrupt driven must not require successive bytes of

data to be transferred to the microprocessor in less than 30 or 40 cycles

and on a given system, only one device is capable of operating at that

rate at one time. This limits the interrupt driven frequency of data transfer

to 40 KHz at a one megahertz clock system and 80 KHz on a two

megahertz clock system.

140

An even more serious problem is the timing delay when an interrupt has

just started to be serviced. The interrupt mask is on and higher priority

interrupts are blocked from service. In this case, the delay to the service

can easily stretch out to 100 cycles before the interrupt mask is cleared.

This is one of the reasons for clearing up the interrupt mask as soon as

data is transferred. (The non-maskable interrupt which will be discussed

later is one solution to this problem.) A second is to only use interrupts for

systems that have adequate buffering and/or slower transfer rates. This

does not imply that most microprocessor applications should not be

primarily interrupt driven. The MCS650X interrupt system is designed to

be very economical and easy to apply. It should be used for almost all

control applications, other than when the throughput described is not

sufficient to handle the particular problem. It should be remembered that

at one megahertz the fast MCS650X is not really capable of handling

problems with more than 50 KHz byte throughput for a sustained period

of operation. It is also true that in most control applications, many of the

signals occur at much slower rates or are bufferable so that the response

time to a request for service is significantly longer than the 20 to 50

cycles that can normally be expected with a polling system. Because of

this, it is expected that most applications will be quite satisfied using the

polling technique described above.

9.8 FULLY VECTORED INTERRUPTS

However, there are occasions where several high speed peripherals can

be managed by the microprocessor if the user is willing to make the

investment to attain a truly vectored interrupt. There is a second level of

interrupt vectoring possible by just putting one high priority device on the

non-maskable interrupt line. However, the case when multiple inputs are

desired with both priority encoding and true vectoring, the MCS650X

when combined with appropriate hardware has the ability in the first

polling instruction to transfer control to appropriate interrupting device

service software.

141

The MCS6520 contains, in its two bytes of memory, an indirect pointer to

the address of the subroutine in which resides the interrupt processing for

the devices, which the priority encoder has selected. This gives an

effective service time of approximately 25 cycles to a prioritized

interrupt and is one of the primary applications of the jump indirect

capability.

9.8.1 JMP Indirect

This instruction establishes a new value for the program counter.

It affects only the program counter in the microprocessor and affects no

flags in the status register.

JMP Indirect is a three byte instruction.

In the JMP Indirect instruction, the second and third bytes of the instruction

represent the indirect low and high bytes respectively of the incremented

with the next memory location containing ADH.

Example 9.6: Illustration of JMP Indirect

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation. Increment
PC to 0101

2 0101 IAL Fetch IAL Interpret Instructions
Increment PC to 0102

3 0102 IAH Fetch IAH Store IAL
4 IAH, IAL ADL Fetch ADL Add 1 to IAL
5 IAH, IAL+1 ADH Fetch ADH Store ADL
6 ADH, ADL Next

OP CODE
Fetch Next
OP CODE

142

9.9 INTERRUPT SUMMARY

There is an interrupt request line (IRQ) that, when low, indicates one of
the devices which are connected to the interrupt request line requires
service. At the beginning of the interrupt service routine, the user should
save, on the stack, whatever registers will be used in his interrupt
processing routine. His program then goes through a polling sequence to
determine the interrupting device by analyzing the status registers in the
order of priority of service for the I/O devices. On finding a device which
requires service, the data for that device should be read or written as
soon as possible and the interrupt disable cleared so that the
microprocessor can interrupt again to service lower priority devices.
Devices with over 40 KHz byte transfer, etc., and mixed devices with over
20 KHz should not normally be run interrupt driven. All others should be
run interrupt driven as it minimizes the service time and programming for
interrupt I/O operations.

9.10 NON-MASKABLE INTERRUPT

As is discussed, it is often desirable to have the ability to interrupt an
interrupt with a high priority device which cannot afford to wait during
the time interrupts are disabled. For this reason, the MCS650X has a
second interrupt line, called a Non-Maskable Interrupt. The input
characteristics of this line are different than the interrupt request line
which senses it needs service when it remains low. The non-maskable input
is an edge sensitive input which means that when the collector-or'd input
transitions from high to low, the microprocessor sets an internal flag such
that at the beginning of the next instruction, no matter what the status of
the interrupt disable, the microprocessor performs the interrupt sequence
shown in Example 9.2 except that the vector pointer put out in cycle 6
and 7 is FFFA and FFFB.

This gives two effects of a non-maskable interrupt. First, no matter what
the status of the interrupt disable, the non-maskable interrupt will
interrupt at the beginning of the next instruction, therefore, the maximum
response time to the vector point is 14 cycles. Secondly, the internal logic
of the MCS650X is such that if an interrupt request and non-maskable
interrupt occur simultaneously or if the non-maskable interrupt occurs prior
to the time that the vectors are selected, the microprocessor always

143

assigns highest priority to the non-maskable interrupt. Therefore, the FFFA
and FFFB vector are always taken if both interrupts are active at the time
the vector is selected. Thus the non-maskable interrupt is always a higher
priority fast response line, and can, in any given system be used to give
priority to the high speed device.

It is possible to connect multiple devices to the non-maskable interrupt line

except for the fact that the non-maskable interrupt is edge sensitive.

Therefore, the same logic that allows the IRQ to stay low until the status

has been checked and the data transferred will keep the non-maskable

interrupt line in a low state until such time as the first interrupt is serviced.

If subsequent to the first interrupt of a non-maskable interrupt line

occurring, a second device which is collector-or’d would have turned on

its status and collector-or'd output, the clearing of the first interrupt

request would not cause the line to re-initialize itself to the high state and

the microprocessor would ignore the second interrupt. Therefore, multiple

lines connected to the non-maskable interrupt must be carefully serviced.

In any case, NMI is always one free high priority vectored interrupt. By

virtue of the fact that it goes to a different vector pointer, the

microprocessor programmer can be guaranteed that in 17 cycles he can

transfer data from the interrupting device on the non-maskable interrupt

input.

The IRQ and NMI are lines which, externally to the microprocessor, control

the action to the microprocessor through an interrupt sequence. As is

mentioned during the discussion on the start command, the restart cycle is

a pseudo interrupt operation with a different vector being selected for

reset which has priority over both interrupt and non-maskable interrupt.

Non-maskable interrupt has priority over interrupt. There is also a

software technique which allows the user to simulate an interrupt with a

microprocessor command, BRK. It is primarily used for causing the

microprocessor to go to a halt condition or stop condition during program

debugging.

144

9.11 BRK – BREAK COMMAND

The break command causes the microprocessor to go through an interrupt
sequence under program control. This means that the program counter of
the second byte after the BRK is automatically stored on the stack along
with the processor status at the beginning of the break instruction. The
microprocessor then transfers control to the interrupt vector.

Symbolic notation for break is PC + 2↓ (FFFE)→PCL (FFFF)→PCH.

Other than changing the program counter, the break instruction changes
no values in either the registers or the flags.

The BRK is a single byte instruction and its addressing mode is Implied.

As is indicated, the most typical use for the break instruction is during
program debugging. When the user decides that the particular program
is not operating correctly, he may decide to patch in the break instruction
over some code that already exists and halt the program when it gets to
that point. In order to minimize the hardware cost of the break which is
applicable only for debugging, the microprocessor makes use of the
interrupt vector point to allow the user to trap out that a break has
occurred. In order to know whether the vector was fetched in response to
an interrupt or in response to a BRK instruction, the B flag is stored on the
stack, at stack pointer plus 1, containing a one in the break bit position,
indicating the interrupt was caused by a BRK instruction. The B bit in the
stack contains 0 if it was caused by a normal IRQ. Therefore, the coding
to analyze for this is as follows in Example 9.7.

Example 9.7: Break-Interrupt Processing

Cycles

Bytes Check for a BRK Flag

4 1 PLA Load Status Register
3 1 PHA Restore onto Stack
2 2 AND # $ 10 Isolate B Flag
2 2 BNE BRK P Branch to Break Programming

11 6

 Normal Interrupt Processing

145

This coding can be inserted any place in the interrupt processing routine.
During debugging, if the user can afford the execution time, it should be
placed immediately after the save routine. If not, it can be put at the end
of the polling routine which gives a priority to the polling devices as far
as servicing the interrupts. However, it should be noted that in order not
to lose the break, the returns from all interrupts during debugging should
go through an equivalent routine.

Once the user has determined that the break is on, a second analysis and
correction must be made. It does not operate in a normal manner of
holding the program counter pointing at the next location in memory
during the BRK instruction. Because of this, the value on the stack for the
program counter is at the break instruction plus two. If the break had
been patched over an instruction, this is usually of no significant
consequence to the user. However, if it is desired to process the next byte
after the break instruction, the use of decrement memory instructions in
the stack must be used.

It is recommended that the user normally takes care of patching programs
with break by processing a full instruction prior to returning and then use
jump returns.

An interesting characteristic about the break instruction is that its OP
CODE is all zeros (0), therefore, BRK coding can be used to patch fusable
link PROMS through a break to an E-ROM routine which inserts patch
coding.

An example of using the break to patch with is shown below:

Example 9.8: Patching with a break utilizing PROMs

Old Code FC21 LDA
 FC22 05
 FC23 21
 FC24 Next OP CODE

Patched FC21 BRK 00
Code FC22 05
 FC23 21
 FC24 Next OP CODE

146

The interrupt vector routine points to:

Patch LDA
 06
 21
 JMP
 24
 FC

This coding substitutes:

 LDA 2106
 for the
 LDA 2105
 coding at
 FC21

by use of the BRK and a break processing routine.

9.12 MEMORY MAP

A series of requirements were discussed to this point for the memory
organization which can be illustrated by the following memory map:

Hex Address

0000 – 00FF RAM used for zero page and indirect memory addressing
operation.

0100 – 01FF RAM used for stack processing and for absolute addressing.
0200 – 3FFF Normally RAM.
4000 – 7FFF Normally I/O.
8000 – FFF9 Program Storage normally ROM.
FFFA Vector low address for NMI.
FFFB Vector high address for NMI.
FFFC Vector low address for RESET.
FFFD Vector high address for RESET.
FFFE Vector low address for IRQ + BRK.
FFFF Vector high address for IRQ + BRK.

The addressing schemes for I/O control between locations 4000 and
8000 Hex, have not been fully developed. This is described in detail in
the Hardware Manual, Chapter 2. The Zero Page addressing requires
that RAM should be located starting in location 00. If more than one RAM
page is necessary, RAM location 0100 through 01FF should be reserved
for the stack or at least a portion of parts should be reserved for the
stack with the rest of it being available to the user to use as normal RAM.
Locations from 0200 up to 4000 are normally reserved for RAM
expansion.

147

In small memory configurations such as are inherent in a MCS6530 class

device, in order to minimize the addressing lines, page two (02XX) will

be normally used for input/output as opposed to using the 40XX page

which is used for devices which require significant amount of outboard

RAM, ROM and I/O.

Because of the fact that the MCS650X has three very important vector

points selected in highest order memory, it is usually more useful to write

programs with the memory storage located at a starting address which

allows the programmer to make sure that the last address in his ROM

contains the start and interrupt vectors. Because of these allocations, the

user finds himself working in three directions. RAM is assigned in location

0000 working up. I/O devices are started at location 4000 starting up

and ROM starts at location FFFF and works down. Although this seems like

an unusual concept, one must remember that the hardware really only

gives performance to either end of memory and, therefore, data located

in the middle has no priority one over the other. So starting at either end

is just as useful a technique as starting at one end and working up.

In order to take maximum advantage of the capability of the

microprocessor, particularly when using a symbolic assembler, working

data should be located starting in the location 0, and stack addresses

should be reserved until after analysis of the working storage

requirements have been completed. Program storage should start in high

order memory with some guess as to the amount of memory required

being taken and that being taken as a start address. However, care

should be taken to assign the three fixed vectors almost immediately at

least symbolically as they are all necessary for correct operation of the

microprocessor.

148

CHAPTER 10

SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.0 DEFINITION OF SHIFT AND ROTATE

In many cases operations of the control systems must operate a bit at a
time. Data is often available only bit-serial and sometimes sequential bit
operations are the only way to solve a particular problem. In addition to
that, in order to combine bits into a field, shift and rotate instructions are
necessary. Multiply and divide routines all require the ability to move bits
relative to one another in a full multiple byte field.

The shift instruction is one that takes a register such as the accumulator
and moves all of the bits in the accumulator 1 bit to the right or 1 bit to
the left. Examples of the shift and rotate instructions in the MCS650X are
shown below:

Example 10.1: General shift and rotate

149

As you can see from our example, moving data 1 bit to the right is called

shift right. The natural consequence of the shift right is that the input bit

or high order bit in this case is set to 0. Moving the data in the register 1

bit to the left is called shift left. In this case, the 0 is inserted in the low

order position. These are the 2 shift capabilities that exist in the

MCS650X microprocessor.

It should be noted that in both cases, the bit that is shifted from the

register, the low order bit in shift right, and the high order bit in shift left,

is stored in the carry flag. This is to allow the programmer to test the bit

by means of the carry branches that are available and also to allow the

rotate capability to transfer bits in multiple precision shifts.

The second part of the multiple precision shift instruction is the rotate which

is shown in Example 10.1, in which the value of the carry bit becomes the

low order bit of the register, and the output bit from the shift is stored in

carry.

10.1 LSR – LOGICAL SHIFT RIGHT

This instruction shifts either the accumulator or a specified memory location

1 bit to the right, with the higher bit of the result always being set to 0,

and the low bit which is shifted out of the field being stored in the carry

flag.

The symbolic notation for LSR is

The shift right instruction either affects the accumulator by shifting it right

1 or is a read/modify/write instruction which changes a specified

memory location but does not affect any internal registers. The shift right

does not affect the overflow flag. The N flag is always reset. The Z flag

is set if the result of the shift is 0 and reset otherwise. The carry is set

equal to bit 0 of the input.

LSR is a read/write/modify instruction and has the following addressing

modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.

150

10.2 ASL – ARITHMETIC SHIFT LEFT

The shift left instruction shifts either the accumulator or the address

memory location 1 bit to the left, with the bit 0 always being set to 0 and

the bit 7 output always being contained in the carry flag. ASL either shifts

the accumulator left 1 bit or is a read/modify/write instruction that

affects only memory.

The symbolic notation for ASL is

The instruction does not affect the overflow bit, sets N equal to the result

bit 7 (bit 6 in the input), sets Z flag if the result is equal to 0, otherwise

resets Z and stores the input bit 7 in the carry flag.

ASL is a read/modify/write instruction and has the following addressing

modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.

10.3 ROL – ROTATE LEFT

The rotate left instruction shifts either the accumulator or addressed

memory left 1 bit, with the input carry being stored in bit 0 and with the

input bit 7 being stored in the carry flags.

The symbolic notation for ROL is

The ROL instruction either shifts the accumulator left 1 bit and stores the

carry in accumulator bit 0 or does not affect the internal registers at all.

The ROL instruction sets carry equal to the input bit 7, sets N equal to the

input bit 6, sets the Z flag if the result of the rotate is 0, otherwise it resets

Z and does not affect the overflow flag at all.

ROL is a read/modify/write instruction and it has the following

addressing modes: Accumulator; Zero Page; Zero Page,X; Absolute;

Absolute,X.

151

10.4 ROR – ROTATE RIGHT (Available on Microprocessors after June, 1976)

The rotate right instruction shifts either the accumulator or addressed

memory right 1 bit with bit 0 shifted into the carry and carry shifted into

bit 7.

The symbolic notation for ROR is

The ROR instruction either shifts the accumulator right 1 bit and stores the
carry in accumulator bit 7 or does not affect the internal registers at all.
The ROR instruction sets carry equal to input bit 0, sets N equal to the
input carry and sets the Z flag if the result of the rotate is 0; otherwise it
resets Z and does not affect the overflow flag at all.

ROR is a read/modify/write instruction and it has the following
addressing modes: Accumulator; Zero Page; Absolute; Zero Page,X;
Absolute,X.

10.5 ACCUMULATOR MODE ADDRESSING

As indicated, all of the shift instructions can operate on the accumulator.
This is a special addressing mode that is unique to the shift instructions
and operates with the following set of operations:

Example 10.2: Rotate accumulator left

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP Code Fetch Next
OP CODE

Finish Previous Operation;
Increment PC to 0101

2 0101 Next
OP Code

Fetch Discarded
OP CODE

Decode Current Instruction;
Hold P-Counter

3 0101 Next
OP Code

Fetch Next
OP CODE

Shift Through the Adder

4 0102 ? Fetch Second
Byte

Store Results into A; Interpret
Next OP CODE

As we can see, the accumulator instructions have the same effect as the

single byte non-stack instructions in the sense that the instruction contains

both the OP CODE and the register in which the operations are going to

be performed; therefore, in cycle 2, the microprocessor holds the

program counter and in cycle 3, fetches the same program counter

152

location and starts the next instruction operation. At the same time, it is

transferring the results from the adder into the accumulator; this is

because of the look-ahead and pipelining characteristics of the

MCS650X. The accumulator shift and rotate operations take only 2 cycles

and 1 byte of memory.

10.6 READ/MODIFY/WRITE INSTRUCTIONS

The MCS650X has a series of instructions which allow the user to change
the contents of memory directly with a single instruction. These instructions
include all of the shift, rotate, increment and decrement memory
instructions. The operation of each of these instructions is the same in that
the addressing mode that is defined for the instruction is implemented the
same way as if for normal instructions. After the address has been
calculated, the effective address is used to read the memory location into
the microprocessor arithmetic unit (ALU). The ALU performs the operation
and then the same effective address is used to write the results back into
memory. The most difficult operation is the addressing mode Absolute
Indexed which is illustrated in Example 10.3 for the rotate left instruction,
ROL.

Example 10.3: Rotate memory left Absolute,X

Cycle Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP Code Fetch
OP CODE

Finish Previous Operation;
Increment PC to 0101

2 0101 ADL Fetch ADL Decode Current Instruction;
Increment PC to 0102

3 0102 ADH Fetch ADH Add ADL+X, Increment PC to
0103

4 ADH,ADL+X ? False Read Add Carry from Previous Add
to ADH

5 ADH+C,
ADL+X

Data Fetch Value

6 ADH+C,
ADL+X

? Destroy Memory Perform Rotate
Turn on Write

7 ADH+C,
ADL+X

Shifted
Data

Store Results Set Flags

8 0103 OP CODE Fetch Next
OP CODE

Increment PC to 0104

153

Cycle 4 is a wasted cycle because read/modify/write instruction should

wait until the carry had been added to the address high in order to avoid

writing a false memory location. This is the same logic that is used in the

store instruction in which the look-ahead or the short cut addressing mode

is not taken advantage of. Cycle 4 is an intermediate read, and cycle 5

is when the actual data that is going to be operated on is read.

The address lines now hold at that address for cycles 5, 6 and 7. The

microprocessor signals both itself and the outside world those operations

during which it will not recognize the ready line. It does this by pulling the

Write line. The Write line is pulled in cycle 6 because data is written into

the memory location that is going to be written into again in cycle 7 with

correct data.

Because data bits read from memory have to be modified and returned,
there is no pipelining effect other than the overlap of the adding in the
address low and index register. The 7 cycles it takes to perform read/
modify/write Absolute Indexed,X instruction is the worst case in timing for
any section of the machine except for interrupt. This unique ability to
modify memory directly is perhaps best illustrated by the coding in
Example 10.4 which is used to shift a 4-bit BCD number, which has been
accumulated in the high 4 bits of the accumulator as part of the decoding
operation, from the accumulator into a memory field. Figure 10.1 is a
flow chart of this example. Examples such as this often occur in point-of-
sale terminals and other machines in which BCD data is entered
sequentially. This example assumes that the value is keyboard entered,
through which data is entered into the accumulator from left to right but
has to be shifted into memory from right to left. The value in the field
before the shift is a 1729 which after the shift will be a 17,295.

154

Flow Chart for Moving in a New BCD Number

FIGURE 10.1

155

Example 10.4: Move a new BCD number into field

 Before After

Field 00 00
 00 01
 17 72
 29 95

Accumulator 50 00

Coding

Bytes Instruction

2 LDY 4
set up for 4 moves

2 LOOP–2 LDX 4
1 ASL A
3 LOOP–1 ROL Price –1, X
1 DEX shift the field 1 bit
2 BNE LOOP–1
1 DEY shifts four times

2 BNE LOOP–2
 14 bytes

There are several new concepts introduced in this example; the first is the

use of index register Y as just a counter to count the number of times the

character has been bit-shifted. It is a common approach to use bit shifts,

as is implemented in the MCS650X family, to shift data into memory. The

power of being able to communicate directly in memory is shown by

shifting bits from one byte to the next byte using a single ROL indexed

instruction. This example uses a loop within a loop and it should be noted

that LOOP 1 occurs 4 times for every time LOOP 2 occurs. The internal

loop is very important in the sense that this loop executes 16 times for the

problem; therefore, its execution time should be optimized.

In addition to having the ability to shift and rotate memory, the MCS650X

has the ability to increment and decrement memory locations.

156

10.7 INC – INCREMENT MEMORY BY ONE

This instruction adds 1 to the contents of the addressed memory location.

The symbolic notation is M + 1 → M.

The increment memory instruction does not affect any internal registers
and does not affect the carry or overflow flags. If bit 7 is on as the result
of the increment, N is set, otherwise it is reset; if the increment causes the
result to become 0, the Z flag is set on, otherwise it is reset.

The addressing modes for increment are: Zero rage; Zero Page,X;
Absolute; Absolute,X.

10.8 DEC – DECREMENT MEMORY BY ONE

This instruction subtracts 1, in two's complement, from the contents of the
addressed memory location.

The symbolic notation for this instruction is M – 1 → M.

The decrement instruction does not affect any internal register in the
microprocessor. It does not affect the carry or overflow flags. If bit 7 is
on as a result of the decrement, then the N flag is set, otherwise it is reset.
If the result of the decrement is 0, the Z flag is set, otherwise it is reset.

The addressing modes for decrement are: Zero Page; Zero Page,X;
Absolute; Absolute,X.

In many examples through the report, we have used the ability to
increment and decrement registers in the microprocessors. The
advantages of incrementing and decrementing in memory are that it is
possible to keep external counters or to directly influence a bit value by
means of these instructions. It is sometimes useful during I/O instructions.

10.9 GENERAL NOTE ON READ/MODIFY/WRITE INSTRUCTIONS

The ability to read, modify and write memory is unique to MCS6500 class
microprocessors. The usefulness of the instructions is limited only by the
user’s approach to organizing memory. Even though the instructions are
fairly long in execution, they are significantly shorter than having to load
and save other registers to perform the same function. Experience in
organizing programs to take advantage of this manipulation of memory
will allow the user to fully appreciate the power of these instructions.

157

CHAPTER 11

PERIPHERAL PROGRAMMING

11.0 REVIEW OF MCS6520 FOR I/O OPERATIONS

It should be noted that in the following discussions, the major difference

between the MCS6530 I/O and the main register of the MCS6520 is

that the extra bit in the control register need not be used in the MCS6530.

All registers in the MCS6530 are directly addressable.

Example 11.1: The MCS6520 Register Map

In Example 11.1 a programming form to describe the PIA is shown. The

programming for is used in the Cross-Assembler and Resident Assembler

with the MCS650X product family. The notation * = is used to define any

location. The notation means that the assembler instruction counter is set

equal to the value following the equal sign. The expression * = * + 1

causes the assembler to recognize that there is one byte of memory

associated with the term; therefore, we can see that the definition of the

four registers PIAD, PIAC, PIBD and PIBC are consecutive memory

locations starting at some base address, with the first byte addressed as

158

PIAD, the second byte addressed as PIAC, the third byte addressed as

PIBD, and the fourth byte as PIBC. This is a normal way a MCS6520

would be organized and this is the way the programming form should be

set up. The base address is picked up by an algorithm described in the

hardware manual but normally it is a value between 4004 and 4080

Hex. Each MCS6520 is given a base address which works progressively

up from 4004 Hex.

In Example 11.1 two registers are shown in dotted lines. This is because

each of the A DATA (AD) and B DATA (BD) parts of the MCS6520 are

actually two registers having the same address, one which specifies the

direction of each of the input/output paths (the Data Direction Register),

the second one which is actually the connection to the input/output paths

(the Data Register). Because of pin limitations on the MCS6520, the

microprocessor can only directly address one of the registers at a time.

Differentiation as to which register is being connected to the

microprocessor is a function of bit 2 in the respective control register (AC

and BC). If bit 2 is off, the Data Direction Register is being addressed; if

it is on, the Data Register is being addressed.

During the initialization sequence, therefore, the MCS6520 starts out with

all registers at zero. This means that the microprocessor is addressing the

Data Direction Register. The PIA initialization is done by writing the

direction of the pins into the Data Direction Register (AD, BD) and then

setting on the control flag as described below. After that, the program

will normally be dealing with the data registers.

Example 11.2: General PIA Initialization

LDA # DIRECT
Initialize Direction

STA PIAD

LDA # CONTR

Initialize Control
STA PIAC

159

Example 11.2 illustrates a general form of initialization and can be

completed for as many PIA’s as there are in the system.

11.1 MCS6520 INTERRUPT CONTROL

The MCS6520 has a basic interrupt capability which is under control of

the programmer. Almost all MCS6500 I/O devices that allow interrupts

have an interrupt control register that allows the user to disable the

interrupt. This will keep inputs which are not necessarily active from

causing spurious interrupts which must be handled by the microprocessor.

Examples of this are open tape loops or other signals which have high

impedance noise sensitive inputs except when connected to some kind of

media. In this type of application, normally the interrupt is enabled by

some physical action from the person using the device such as loading of

the cassette, pushing the power-on switch, etc. In the case of the

MCS6520, there are two interrupt causing conditions for each control

register.

Each of these interrupts concern themselves with one input pin. The Control

Register allows the programmer to decide whether or not the pin is

sensitive to positive edge signals or negative edge signals and whether

or not an interrupt shall occur when the selected transition has occurred.

It should be noted that, therefore, it is possible for a line to cause a status

bit to be set without causing an interrupt. The comprehensive I/O Program

in Section 11.5 uses this combination.

160

Example 11.3: Interrupt Mode Setup

Bit 7 Status Bit: Bits 1 0 Interrupt

Set on Negative Edge 0 0 No
Set on Negative Edge 0 1 Yes
Set on Positive Edge 1 0 No
Set on Positive Edge 1 1 Yes

Bit 6 Status Bit:

Bits 4 3 * Interrupt

Set on Negative Edge 0 0 No
Set on Negative Edge 0 1 Yes
Set on Positive Edge 1 0 No
Set on Positive Edge 1 1 Yes

*If Bit 5 equals zero

The proper combination of bits are usually determined during the design

of the MCS6520 interconnection and form the constant which is loaded in

the control register. The constant that is loaded in the control register

should contain bit 2 on. For example, to allow bit 7 to be set on negative

going signals with interrupt enable and bit 6 to be set on positive signals

with interrupt disable, the control value would be Hex 15.

With bit 3 on, the pin that controls bit 6 can be set as an output pin. The

output pin is either controllable by the microprocessor directly or acts as

a handshake to reflect the status of reads and writes of the data register.

The operation of the output pins CA2, CB2 depends on how bits 5, 4, and

3 are programmed, as shown in Example 11.4.

Example 11.4: CA2, CB2 Output Control

CA2 Output With:

Bit 5 on
Bit 4

Bit 3

Low on read or write for one cycle 0 0
Low on read or write until bit 7 is on 0 1
Always 0 1 0
Always 1 1 1

161

The decision as to whether or not to use the one cycle low until bit 7 comes
on is a hardware decision, depending on the device which is hooked to
the pin.

It should be of interest to the programmer to note that bit 6 controls pins
known as CA2 or CB2 which can be considered to be auxiliary outputs
which are controlled by bit 3 assuming the processor is initialized so that
bit 5 and bit 4 are ones.

Example 11.5 shows the use of controlling bit 3 using AND and OR
instructions; however, it should be noted that this technique applies for
any individual bit in the PIA data direction register also:

Example 11.5: Routine to Change CA2 or CB2 Using Bit 3 Control

Set CA2

LDA PIAC
ORA #$08
STA PIAC

Clear CA2

LDA PIAC
AND #$F7
STA PIAC

Note: $ – Direction to Assembler for Hex Notation
 # – Direction to Assembler for Production Operator

By similar techniques, every pin in the microprocessors of the MCS6520
can be controlled. There are two particular notes to remember:

1. In the MCS6520, both bit 6 and bit 7 are cleared on either side
 by reading of the corresponding data register if bit 6 has been
 set up as an input. This means that polling sequences for I/O
 instructions should only read the status registers and then read
 the data registers after the status has been determined,
 otherwise false clearing of the status data may occur.

2. Even though the handshake for the CB2 pin is on write of B data,
 a read of B data must be done to clear bit 7.

162

11.2 IMPLEMENTATION TRICKS FOR USE OF THE MCS6520

 PERIPHERAL INTERFACE DEVICES

11.2.1 Shortcut Polling Sequences

In section 9.7, the techniques for using a LOAD A to poll for interrupts was

covered; however, the I/O devices on the MCS6520 can either set bit 6

or bit 7 on to cause an interrupt; therefore, a different technique needs

to be used to analyze the MCS6520 to poll a series of 6520’s each one

of which could have caused the interrupt. It is for this purpose that the BIT

instruction senses both bit 6 and bit 7. Coding for a full poll of a PIA is as

shown:

Example 11.6: Polling the MCS6520

Interrupt Vector JMP STORE

 LDA #C0 Set up Mask for 6 and 7

 BIT PIAAC Check for neither 6 or 7

 BEQ NXT1

 BMI SEVEN If 7, go to save – otherwise clear

 Process BIT

 6 Interrupt

NXTI BIT PIABC

 BEQ NXTZ

 etc.

This program takes full advantage of the BIT instruction by checking for

both bit 7 and 6 clear. BMI to SEVEN just checks N is on and that N is a

higher priority. If bit 6 is one, the overflow bit will also be set, allowing

the finish of the process seven routine to test the overflow and jump back

to the process bit 6 coding.

163

Bit 6 and bit 7 were sampled by the single BIT instruction. Speed was

accomplished by loading the mask for just bit 6 and 7 into the register

which allows the BEQ instruction to determine that neither of the two flags

is on.

This routine depends on the fact that in the MCS6520, if CA2 or CB2 is

an output, bit 6 is always zero.

11.2.2 Bit Organization on MCS6520’s

In the microprocessor, there is a definite positional preference for the

testing of single bits. In the MCS6520 Data Direction Register, it is

possible to select any combinations of input/output pins by the pattern

that is loaded in the Data Direction Register. A one bit corresponds to an

output and a zero bit corresponds to an input. The natural tendency would

be to use MCS6520s with all eight bits organized into a byte. There is

relatively little advantage to organizing this way unless the eight bits are

to be treated as a single byte by the program. This is often not the case,

more often the bits are a collection of switches, coils, lights, etc.

On such combinations, advantage should be taken of the fact that bit 7

is directly testable so that a more useful combination of eight pins on one

MCS6320 register would be seven outputs and a single input with the

single input on bit 7. This organization allows the programmer to load

and branch on that location without ever having to perform a bit or shift

instruction to isolate a particular bit.

A similar capability for setting a single bit involves the organization of

data with seven inputs and a single output with a single output located in

bit 0. This bit may be set or cleared by an INC or DEC instruction without

affecting the rest of the bits in the register because the input pins ignore

signals written from the microprocessor. Therefore, the more skilled

MCS6500 programmer will often mix single outputs on bit 0 and a single

input on bit 7 with bits of the corresponding opposite type.

164

11.2.3 Use of READ/MODIFY/WRITE Instruction For Keyboard
 Encoding

A rather unique use of the memory with a READ/MODIFY/WRITE
operation involves setting the data register at all zeros, then using the
three state output of the B side to sample a keyboard.

The following Figure 11.1 shows the connection for a 64 key keyboard
organized 8 x 8:

Keyboard Encoding Matrix Diagram

FIGURE 11.1

165

The B side is set up to act as a strobe so that each of the output lines will

have a ground on it during one scan cycle. The eight A side data inputs

are then sampled and decoded by the microprocessor giving a 64 key

keyboard which is directly translatable into code.

Figure 11.1 and Example 11.7 make use of the capability of the

microprocessor to move a bit through the MCS6520 register location. This

program also uses the compare instruction and the ability to detect a

carry during a shift.

Example 11.7: Coding for Strobing an 8 x 8 Keyboard

Output Strobe is indicated by a one in Data Director Register. Any

connection is indicated by a zero in register bit.

 LDX #0 Initialize B Data Register
 STX PIABD
 LDA PIABC
 AND #FB Initialize Control Register to
 STA PIABC Address Data Direction Register
 STX PIABC
 SEC
LOOP ROL PIABD Shift for strobe
 BCS DONE

If all sampled, Exit
 LDA PIAAD
 CMP #FF Check for no zeros
 BEQ LOOP
DONE ------------- If any zeros then process them

 A PIABD can now be used to find out just what key is

depressed.

166

Keyboard Strobe Sequence

FIGURE 11.2

167

11.3 MCS6530 PROGRAMMING

Although they have separate addressing, the Data Direction and

Input/Output Registers operate the same as on the MCS6520.

Programming of the Interval Timer has some special problems. First of all,

the time is effectively located in all addresses from XXX4–XXXF. By

picking the proper address, the programmer is able to control the P scale

for the timeout. Initialization of the Interval Timer is done by a LOAD A

followed by STORE A into the timing count. The value stored in the timing

counter represents the number of states which the counter will count

through. The address used to load will determine how many additional

divisions of the basic clock cycle will be counted.

When the counter finally counts to zero, it continues to count past zero at

the one cycle clock rate in order to give the user an opportunity to sample

the Status Register, then come back and read the Mount Register to

determine how long it has been since an interrupt occurred. Servicing an

interrupt is the same for this Control Register as for any other interrupting

register. Bit 7 is set on in the Status Register to indicate that the Interval

Timer is in the interrupt state and bit 7 is reset by the reading of the

Counter.

11.3.1 Reading of the Counter Register

Because of the nature of counting past zero, the number in the Count

Register is in two’s complement form. It can be added directly to and

used to correct the next count in a sequential string of counts or for

correction for one cycle accuracy.

11.4 HOW TO ORGANIZE TO IMPLEMENT CODING

The specific details of organizing to get coding assembled is a function
of the software that is used to implement the coding. Two software
programs are currently available for the MCS650X family.

The Cross Assembler is available on various time share systems or for

batch use on the user's system. Its documentation is covered in the Cross-

168

Assembler Manual, publication number 6500-60. The Resident Assembler

is available in the Microcomputer Development Terminal, as well as for

sale in ROMs. The documentation for this is covered in the Resident

Assembler Manual, publication number 6500-65.

The major advantages of using an assembler are that the assembler takes

mnemonics and labels and calculates the fixed code. Reference to the OP

CODE tables in the appendix shows that coding in Hex is quite difficult

because there is no ordered pattern to the instruction Hex codes.

The Cross Assembler or Resident Assembler allows one to specify all

inputs and outputs in symbolic form on a documented listing. Symbolic

addressing is a technique which has the following advantages over

numerical addressing:

1. It allows the user to postpone until the last minute actual memory

 allocation in a program which is being developed. In a

 microprocessor that has memory-oriented features such as Zero

 Page, memory management is important. It is desirable to have

 as many as possible of the read/write values in the Zero Page.

 However, until the coding is complete, the organization of Zero

 Page may be in doubt. Values which are originally assigned in

 Zero Page may not be as valuable there after some analysis of

 the coding either indicates that the applications of these values

 use indirect references or indexing by Y which does not allow the

 program to really take advantage of Zero Page locations

 whereas some other code which may not be as frequently used

 might still result in a code reduction by use of Zero Page. This

 allocation, if all the fields are defined symbolically, can be done

 on the final assembly without any changing in the user’s codes.

2. Use of symbolic addresses for programming branches leads to

 a better documented program and as one soon determines

 calculation of relative branches is difficult and subject to change

169

 any time a coding change is made. For example, if one has

 organized a program with a loop in which three or four branches

 all return to the same point and then discovers a programming

 error which requires a single instruction to be added between the

 return point and various branches, each branch would have to be

 edited and recalculated. The symbolic assembler accomplishes

 this automatically on the next assembly pass.

11.4.1 Label Standards

The MCS650X assemblers have been done on a reserve word basis in

which the various mnemonics which have been described are always

considered to be OP CODE mnemonics. lf any three character fields

exactly match a mnemonic then the assembler assumes that the field is an

OP CODE and proceeds to evaluate the addressing. Any other label may

be located in free form anywhere in the coding. This means that one

should organize one’s labels such that he never has a three character

label which inadvertently might be considered an OP CODE. The easiest

way to accomplish this is to always follow a pattern on labels.

Good programming practice requires that the user develop a systems

flow chart for his own basic program and individual flow charts for

subroutines before starting the coding. From the time the routine is flow

charted, it is very easy for the user to then assign a mnemonic label to

the basic subroutine.

In this text, notations like LOOP, LOOP 1, etc. are used. In an ADD, loop

would be ADLP.

The MCS650X assembler allows six spaces for labels. It is good practice

to use two characters to generally identify the subroutine, two more

characters for mnemonic purposes and then a numbering system which

allows correlation between various addresses within a LOOP within a

subroutine. By strictly numbering such that ADLP1 is different from ADLP3,

each can be addresses within the same LOOP.

170

It is assumed that the PIA’s are connected in the normal manner of Status
Register Address equal to Data Register Address + 1.

The following table and flow chart defines the program implemented in
the example.

Table #1 contains the address of all of the MCS6520 Status Registers.

Table #2 contains the address of the put-away location for the respective
data.

171

Using six character labels, there are a hundred combinations of code

which could be used in a given routine or loop without the user having to

think through the rest of mnemonic notation. The use of characters plus a

numeric for all references is sound programming practice. The advantage

of using this technique allows one to use three character mnemonics

without ever interfering with the reserve word of the microprocessor OP

CODE mnemonics because they never have a numeric in the mnemonic.

11.5 COMPREHENSIVE I/O PROGRAM

Figure 11.3 demonstrates the program flow in support of the Cross-

Assembler listing (Example 11.8) of a time-sharing routine of a program

which illustrates the use of the indexed indirect to perform a search of

eight devices which have active signals for servicing. The implementation

of the eight devices is done in HCS6520's where the MCS6520 status is

set up to be a flag in bit 7 of a Control Register.

172

Program Flow – Polling for Active Signal

FIGURE 11.3

173

Example 11.8: Polling for Active Signal

CARD = LOC CODE CARD

3
4
5 AH SYSTEMS BENCHMARK = 5 – POLLING 8 PERIPHERALS
6
7
8
9 SET TABLES AND STORAGE AREAS

10
11 0000 *=$02 INITIALIZE PC
12 0002 05 40 TABLE1 .WORD PIA1AC TABLE OF PIA PERIPHERAL CONTROL
13 0004 07 40 .WORD PIA1BC
14 0006 09 40 .WORD PIA2AC
15 0008 0B 40 .WORD PIA2BC
16 000A 11 40 .WORD PIA3AC
17 000C 13 40 .WORD PIA3BC
18 000E 21 40 .WORD PIA4AC
19 0010 23 40 .WORD PIA4BC
20 0012 00 02 TABLE2 .WORD STORE1 POINTERS TO STORE INPUT DATA FROM PERIPHERALS
21 0014 50 02 .WORD STORE2
22 0016 A0 02 .WORD STORE3
23 0018 F0 02 .WORD STORE4
24 001A 40 03 .WORD STORE5
25 001C 90 03 .WORD STORE6
26 001E E0 03 .WORD STORE7
27 0020 30 04 .WORD STORE8
28
29 0022 *=$200 SET SPACE FOR DATA INPUT ON PAGE 2
30 0200 STORE1 *=*+80 FOR EACH DEVICE SET BUFFER 80 CHARACTERS LONG
31 0250 STORE2 *=*+80
32 02A0 STORE3 *=*+80
33 02F0 STORE4 *=*+80
34 0340 STORE5 *=*+80
35 0390 STORE6 *=*+80
36 03E0 STORE7 *=*+80
37 0430 STORE8 *=*+80
38
39
40 MAIN PROGRAM
41
42 0480 *=$FC00

43 FC00 A2 10 PLOP1 LDX=016 INITIALIZE INDEX REGISTER X WITH 16
44 FC02 A1 00 PLOP2 LDA (TABLE1–2,X) INDIRECT ADDRESSING OF PERIPHERAL CONTROL
45 FC04 30 06 BMI DOIT IF FLAG SET BRANCH AND SERVICE THE DEVICE
46 FC06 CA DEX IF NOT SEARCH NEXT ONE
47 FC07 CA DEX
48 FC08 D0 F8 BNE PLOP2
49 FC0A F0 F4 BEQ PLOP1 START AGAIN TO POLL FROM THE BEGINNING
50
51 SERVICE ROUTINE
52
53 FC0C D6 00 DOIT DEC TABLE1–2,X MOVE THE POINTER TO PIA DATA REGISTER
54 FC0E A1 00 LDA (TABLE1–2,X) READ DATA IN
55 FC10 81 10 STA (TABLE2–2,X) STORE THE DATA INTO THE BUFFER
56 FC12 F6 10 INC TABLE2–2,X SET BUFFER POINTER TO NEXT LOCATION
57 FC14 F6 00 INC TABLE1–2,X
58 FC16 D0 E8 BNE PLOP1 WHEN DONE START FROM THE BEGINNING AGAIN
59
60
61 ASSIGN PIA LOCATION
62
63 FC18 *=$4004
64 4004 PIA1AD *=*+1 FIRST PERIPHERAL
65 4005 PIA1AC *=*+1
66 4006 PIA1BD *=*+1 SECOND
67 4007 PIA1BC *=*+1
68 4008 *=$4008
69 4008 PIA2AD *=*+1 THIRD
70 4009 PIA2AC *=*+1
71 400A PIA2BD *=*+1 FOURTH
72 400B PIA2BC *=*+1
73 400C *=$4010
74 4010 PIA3AD *=*+1 FIFTH
75 4011 PIA3AC *=*+1
76 4012 PIA3BD *=*+1 SIXTH
77 4013 PIA3BC *=*+1
78 4014 *=$4020
79 4020 PIA4AD *=*+1 SEVENTH
80 4021 PIA4AC *=*+1
81 4022 PIA4BD *=*+1 EIGHTH
82 4023 PIA4BC *=*+1
83 .END END OF PROGRAM

CARD SERIAL NUMBER

MEMORY LOCATION

COMMENT

PROGRAM LOCATION

LABEL VALUE

OP CODE

MNEMONIC

SYMBOLIC ADDRESS

ADDRESS

A-1

APPENDIX A

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

DEFINITION OF

INSTRUCTION GROUPS

A-2

A-3

A.1 INTRODUCTION

The microprocessor instruction set is divided into three basic groups. The

first group has the greatest addressing flexibility and consists of the most

general purpose instructions such as Load, Add, Store, etc. The second

group includes the Read, Modify, Write instructions such as Shift,

Increment, Decrement and the Register X movement instructions. The third

group contains all the remaining instructions, including all stack

operations, the register Y, compares for X and Y and instructions which

do not fit naturally into Group One or Group Two.

There are eight Group One instructions, eight Group Two instructions, and

all of the 39 remaining instructions are Group Three instructions.

The three groups are obtained by organizing the OP CODE pattern to

give maximum addressing flexibility (16 addressing combinations) to

Group One, to give eight combinations to Group Two instructions and the

Group Three instructions are basically individually decoded.

A.2 GROUP ONE INSTRUCTIONS

These instructions are: Add With Carry (ADC), (AND), Compare (CMP),

Exclusive Or (EOR), Load A (LDA), Or (ORA), Subtract With Carry (SBC),

and Store A (STA). Each of these instructions has a potential for 16

addressing modes. However, in the MCS6501 through MCS6505, only

eight of the available modes have been used.

Addressing modes for Group One are: Immediate, Zero Page, Zero Page

Indexed by X, Absolute, Absolute Indexed by X, Absolute Indexed by Y,

Indexed Indirect, Indirect Indexed. The unused eight addressing modes

are to be used in future versions of the MCS650X product family to allow

addressing of additional on-chip registers, of on-chip I/O ports, and to

allow two byte word processing.

A-4

A.3 GROUP TWO INSTRUCTIONS

Group Two instructions are primarily Read, Modify, Write instructions.

There are really two subcategories within the Group Two instructions. The

components of the first group are shift and rotate instructions and are:

Shift Right (LSR), Shift Left (ASL), Rotate Left (ROL), and Rotate Right

(ROR).

The second subgroup includes the Increment (INC) and Decrement (DEC)

instructions and the two index register X instructions, Load X (LDX) and

Store X (STX). These instructions would normally have eight addressing

modes available to them because of the bit pattern. However, to allow

for upward expansion, only the following addressing modes have been

defined: Zero Page, Zero Page Indexed by X, Absolute, Absolute

Indexed by X, and a special Accumulator (or Register) mode. The four

shift instructions all have register A operations; the incremented or

decremented Load X and Store X instructions also have accumulator

modes although the Increment and Decrement Accumulator has been

reserved for other purposes. Load X from A has been assigned its own

mnemonic, TAX. Also included in this group are the special functions of

Decrement X which is one of the special cases of Store X. Included also in

this group in the X decodes are the TXS and TSX instructions.

All Group One instructions have all addressing modes available to each

instruction. In the case of Group Two instructions, another addressing

mode has been added; that of the accumulator and the other special

decodes have also been implemented in this basic group. However, the

primary function of Group Two instructions is to perform some memory

operation using the appropriate index.

It should be noted for documentation purposes that the X instructions have

a special mode of addressing in which register Y is used for all indexing

operations; thus, instead of Zero Page Indexed by X, X instructions have

Zero Page Indexed by Y, and instead of having Absolute Indexed by X,

X instructions have Absolute Indexed by Y.

A-5

A.4 GROUP THREE INSTRUCTIONS

There are really two major classifications of Group Three instructions; the

modify Y register instructions, Load Y (LDY), Store Y (STY), Compare Y

(CPY), and Compare X (CPX), instructions actually occupy about half of

the OP CODE space for the Group Three instructions. Increment X (INX)

and Increment Y (INY) are special subsets of the Compare X and

Compare Y instructions and all of the branch instructions are in the Group

Three instructions.

Instructions in this group consist of all of the branches: BCC, BCS, BEQ,

BMI, BNE, BPL, BPC and BPS. All of the flag operations are also devoted

to one addressing mode; they are: CLC, SEC, CLD, SED, CLI, SEI and CLV.

All of the push and pull instructions and stack operation instructions are

Group Three instructions. These include: BRK, JSR, PHA, PHP, PLA and PLP.

The JMP and BIT instructions are also included in this group. There is no

common addressing mode available to members of this group. Load Y,

Store Y, BIT, Compare X and Compare Y have Zero Page and Absolute,

and all of the Y and X instructions allow Zero Page Indexed operations

and Immediate.

B-1

APPENDIX B

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

WITH OP CODES, EXECUTION CYCLES

AND MEMORY REQUIREMENTS

B-2

THE FOLLOWING NOTATION APPLIES TO THIS SUMMARY:

A Accumulator

X, Y Index Registers

M Memory

P Processor Status Register

S Stack Pointer

� Change

 _ No Change

+ Add

Ʌ Logical AND

– Subtract

⊻ Logical Exclusive OR

↑ Transfer from Stack

↓ Transfer to Stack

→ Transfer to

← Transfer from

∨ Logical OR

PC Program Counter

PCH Program Counter High

PCL Program Counter Low

Oper Operand

Immediate Addressing Mode

NOTE: At the top of each table is located in parenthesis a reference number

 (Ref: XX) which directs the user to that Section in the MCS6500

 Microcomputer Family Programming Manual in which the instruction is

 defined and discussed.

B-3

ADC Add Memory to Accumulator with Carry ADC

 N Ƶ C I D V

Operation: A + M + C → A, C � � � _ _ �

(Ref: 2.2.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate ADC # Oper 69 2 2

Zero Page ADC Oper 65 2 3

Zero Page, X ADC Oper, X 75 2 4

Absolute ADC Oper 6D 3 4

Absolute, X ADC Oper, X 7D 4 4*

Absolute, Y ADC Oper, Y 79 3 4*

(Indirect, X) ADC (Oper, X) 61 2 6

(Indirect), Y ADC (Oper), Y 71 2 5*

*Add 1 if page boundary is crossed

AND “AND” Memory with Accumulator AND

Logical AND to the accumulator N Ƶ C I D V

Operation: A ɅɅɅɅ M → A � � _ _ _ _

(Ref: 2.2.4.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate AND # Oper 29 2 2

Zero Page AND Oper 25 2 3

Zero Page, X AND Oper, X 35 2 4

Absolute AND Oper 2D 3 4

Absolute, X AND Oper, X 3D 3 4*

Absolute, Y AND Oper, Y 39 3 4*

(Indirect, X) AND (Oper, X) 21 2 6

(Indirect), Y AND (Oper), Y 31 2 5

*Add 1 if page boundary is crossed

B-4

ASL Shift Left One Bit (Memory or Accumulator) ASL

 N Ƶ C I D V

Operation: � � � _ _ _

(Ref: 10.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator ASL A 0A 1 2

Zero Page ASL Oper 06 2 5

Zero Page, X ASL Oper, X 16 2 6

Absolute ASL Oper 0E 3 6

Absolute, X ASL Oper, X 1E 3 7

BCC Branch on Carry Clear BCC

 N Ƶ C I D V

Operation: Branch on C = 0 _ _ _ _ _ _

(Ref: 4.1.2.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Relative BCC Oper 90 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

B-5

BCS Branch on Carry Set BCS

 N Ƶ C I D V

Operation: Branch on C = 1 _ _ _ _ _ _

(Ref: 4.1.2.4)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Relative BCS Oper B0 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

BEQ Branch on Result Zero BEQ

 N Ƶ C I D V

Operation: Branch on Ƶ = 1 _ _ _ _ _ _

(Ref: 4.1.2.5)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BEQ Oper F0 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

B-6

BIT Test Bits in Memory with Accumulator BIT

Bit 6 and 7 are transferred to the Status Register.

If the result of A ɅɅɅɅ M is zero then Ƶ = 1, otherwise Ƶ = 0. N Ƶ C I D V

Operation: A ɅɅɅɅ M, M7 → N, M6 → V M7 � _ _ _ M6

(Ref: 4.2.2.1)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Zero Page BIT Oper 24 2 3

Absolute BIT Oper 2C 3 4

BMI Branch on Result Minus BMI

 N Ƶ C I D V

Operation: Branch on N = 1 _ _ _ _ _ _

(Ref: 4.1.2.1)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BMI Oper 30 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

B-7

BNE Branch on Result Not Zero BNE

N Ƶ C I D V

Operation: Branch on Ƶ = 0 _ _ _ _ _ _

(Ref: 4.1.2.6)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BNE Oper D0 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BPL Branch on Result Plus BPL

N Ƶ C I D V

Operation: Branch on N = 0 _ _ _ _ _ _

(Ref: 4.1.2.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BPL Oper 10 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

B-8

BRK
Force Break

BRK

N Ƶ C I D V

Operation: Forced Interrupt PC + 2 ↓ P ↓ _ _ _ 1 _ _

(Ref: 9.11)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied BRK 00 1 7

1. A BRK command cannot be masked by setting I.

BVC Branch on Overflow Clear BVC

N Ƶ C I D V

Operation: Branch on V = 0 _ _ _ _ _ _

(Ref: 4.1.2.8)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BVC Oper 50 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

B-9

BVS Branch on Overflow Set BVS

N Ƶ C I D V

Operation: Branch on V = 1 _ _ _ _ _ _

(Ref: 4.1.2.7)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Relative BVS Oper 70 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

CLC Clear Carry Flag CLC

N Ƶ C I D V

Operation: 0 → C _ _ 0 _ _ _

(Ref: 3.0.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLC 18 1 2

B-10

CLD Clear Decimal Mode CLD

N Ƶ C I D V

Operation: 0 → D _ _ _ _ 0 _

(Ref: 3.3.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLD D8 1 2

CLI Clear Interrupt Disable Bit CLI

N Ƶ C I D V

Operation: 0 → I _ _ _ 0 _ _

(Ref: 3.2.2)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLI 58 1 2

B-11

CLV Clear Overflow Flag CLV

N Ƶ C I D V

Operation: 0 → V _ _ _ _ _ 0

(Ref: 3.6.1)

Addressing

Mode
Assembly Language Form

OP

CODE

No.

Bytes

No.

Cycles

Implied CLV B8 1 2

CMP Compare Memory and Accumulator CMP

N Ƶ C I D V

Operation: A – M � � � _ _ _

(Ref: 4.2.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate CMP # Oper C9 2 2

Zero Page CMP Oper C5 2 3

Zero Page, X CMP Oper, X D5 2 4

Absolute CMP Oper CD 3 4

Absolute, X CMP Oper, X DD 3 4*

Absolute, Y CMP Oper, Y D9 3 4*

(Indirect, X) CMP (Oper, X) C1 2 6

(Indirect), Y CMP (Oper), Y D1 2 5*

*Add 1 if page boundary is crossed.

B-12

CPX Compare Memory and Index X CPX

N Ƶ C I D V

Operation: X – M � � � _ _ _

(Ref: 7.8)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate CPX # Oper E0 2 2

Zero Page CPX Oper E4 2 3

Absolute CPX Oper EC 3 4

CPY Compare Memory and Index Y CPY

N Ƶ C I D V

Operation: Y – M � � � _ _ _

(Ref: 7.9)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate CPY # Oper C0 2 2

Zero Page CPY Oper C4 2 3

Absolute CPY Oper CC 3 4

B-13

DEC
Decrement Memory by One

DEC

N Ƶ C I D V

Operation: M – 1 → M � � _ _ _ _

(Ref: 10.8)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page DEC Oper C6 2 5

Zero Page, X DEC Oper, X D6 2 6

Absolute DEC Oper CE 3 6

Absolute, X DEC Oper, X DE 3 7

DEX
Decrement Index X by One

DEX

N Ƶ C I D V

Operation: X – 1 → X � � _ _ _ _

(Ref: 7.6)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied DEX CA 1 2

B-14

DEY
Decrement Index Y by One

DEY

N Ƶ C I D V

Operation: Y – 1 → Y � � _ _ _ _

(Ref: 7.7)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied DEY 88 1 2

EOR “Exclusive-OR ” Memory with Accumulator EOR

N Ƶ C I D V

Operation: A ⊻⊻⊻⊻ M → A � � _ _ _ _

(Ref: 2.2.4.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate EOR # Oper 49 2 2

Zero Page EOR Oper 45 2 3

Zero Page, X EOR Oper, X 55 2 4

Absolute EOR Oper 4D 3 4

Absolute, X EOR Oper, X 5D 3 4*

Absolute, Y EOR Oper, Y 59 3 4*

(Indirect, X) EOR (Oper, X) 41 2 6

(Indirect), Y EOR (Oper), Y 51 2 5*

* Add 1 if page boundary is crossed.

B-15

INC Increment Memory by One INC

N Ƶ C I D V

Operation: M + 1 → M � � _ _ _ _

(Ref: 10.7)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page INC Oper E6 2 5

Zero Page, X INC Oper, X F6 2 6

Absolute INC Oper EE 3 6

Absolute, X INC Oper, X FE 3 7

INX Increment Index X by One INX

N Ƶ C I D V

Operation: X + 1 → X � � _ _ _ _

(Ref: 7.4)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied INX E8 1 2

B-16

INY
Increment Index Y by One

INY

N Ƶ C I D V

Operation: Y + 1 → Y � � _ _ _ _

(Ref: 7.5)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied INY C8 1 2

JMP
Jump to New Location

JMP

N Ƶ C I D V

Operation: (PC + 1) → PCL

 (PC + 2) → PCH

_ _ _ _ _ _

(Ref: 4.0.2)
(Ref: 9.8.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Absolute JMP Oper 4C 3 3

Indirect JMP (Oper) 6C 3 5

B-17

JSR
Jump to New Location Saving Return Address

JSR

N Ƶ C I D V

Operation: PC + 2 ↓ , (PC + 1) → PCL

 (PC + 2) → PCH

_ _ _ _ _ _

(Ref: 8.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Absolute JSR Oper 20 3 6

LDA
Load Accumulator with Memory

LDA

N Ƶ C I D V

Operation: M → A � � _ _ _ _

(Ref: 2.1.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate LDA # Oper A9 2 2

Zero Page LDA Oper A5 2 3

Zero Page, X LDA Oper, X B5 2 4

Absolute LDA Oper AD 3 4

Absolute, X LDA Oper, X BD 3 4*

Absolute, Y LDA Oper, Y B9 3 4*

(Indirect, X) LDA (Oper, X) A1 2 6

(Indirect), Y LDA (Oper), Y B1 2 5*

* Add 1 if page boundary is crossed.

B-18

LDX Load Index X with Memory LDX

N Ƶ C I D V

Operation: M → X � � _ _ _ _

(Ref: 7.0)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate LDX # Oper A2 2 2

Zero Page LDX Oper A6 2 3

Zero Page, Y LDX Oper, Y B6 2 4

Absolute LDX Oper AE 3 4

Absolute, Y LDX Oper, Y BE 3 4*

* Add 1 when page boundary is crossed.

LDY Load Index Y with Memory LDY

N Ƶ C I D V

Operation: M → Y � � _ _ _ _

(Ref: 7.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate LDY # Oper A0 2 2

Zero Page LDY Oper A4 2 3

Zero Page, Y LDY Oper, Y B4 2 4

Absolute LDY Oper AC 3 4

Absolute, X LDY Oper, X BC 3 4*

* Add 1 when page boundary is crossed.

B-19

LSR Shift Right One Bit (Memory or Accumulator) LSR

N Ƶ C I D V

Operation: 0 � � _ _ _

(Ref: 10.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator LSR A 4A 1 2

Zero Page LSR Oper 46 2 5

Zero Page, X LSR Oper, X 56 2 6

Absolute LSR Oper 4E 3 6

Absolute, X LSR Oper, X 5E 3 7

NOP No Operation NOP

N Ƶ C I D V

Operation: No Operation (2 cycles) _ _ _ _ _ _

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied NOP EA 1 2

B-20

ORA “OR” Memory with Accumulator ORA

N Ƶ C I D V

Operation: A ∨∨∨∨ M → A � � _ _ _ _

(Ref: 2.2.4.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate ORA # Oper 09 2 2

Zero Page ORA Oper 05 2 3

Zero Page, X ORA Oper, X 15 2 4

Absolute ORA Oper 0D 3 4

Absolute, X ORA Oper, X 1D 3 4*

Absolute, Y ORA Oper, Y 19 3 4*

(Indirect, X) ORA (Oper, X) 01 2 6

(Indirect), Y ORA (Oper), Y 11 2 5*

* Add 1 on page crossing.

PHA Push Accumulator on Stack PHA

N Ƶ C I D V

Operation: A ↓ _ _ _ _ _ _

(Ref: 8.5)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PHA 48 1 3

B-21

PHP Push Processor Status on Stack PHP

N Ƶ C I D V

Operation: P ↓ _ _ _ _ _ _

(Ref: 8.11)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PHP 08 1 3

PLA
Pull Accumulator from Stack

PLA

N Ƶ C I D V

Operation: A ↑ � � _ _ _ _

(Ref: 8.6)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PLA 68 1 4

B-22

PLP
Pull Processor Status from Stack

PLP

N Ƶ C I D V

Operation: P ↑ From Stack

(Ref: 8.12)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied PLP 28 1 4

ROL
Rotate One Bit Left (Memory or Accumulator)

ROL

N Ƶ C I D V

Operation: � � � _ _ _

(Ref: 10.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator ROL A 2A 1 2

Zero Page ROL Oper 26 2 5

Zero Page, X ROL Oper, X 36 2 6

Absolute ROL Oper 2E 3 6

Absolute, X ROL Oper, X 3E 3 7

B-23

ROR
Rotate One Bit Right (Memory or Accumulator)

ROR

N Ƶ C I D V

Operation: � � � _ _ _

(Ref: 10.4)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Accumulator ROR A 6A 1 2

Zero Page ROR Oper 66 2 5

Zero Page, X ROR Oper, X 76 2 6

Absolute ROR Oper 6E 3 6

Absolute, X ROR Oper, X 7E 3 7

NOTE: ROR instruction is available on MCS650X microprocessors after June, 1976.

RTI Return from Interrupt RTI

N Ƶ C I D V

Operation: P ↑ PC ↑ From Stack

(Ref: 9.6)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied RTI 40 1 6

RTS Return from Subroutine RTS

N Ƶ C I D V

Operation: PC ↑, PC + 1 → PC _ _ _ _ _ _

(Ref: 8.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied RTS 60 1 6

B-24

SBC Subtract Memory from Accumulator with Borrow SBC

Operation: A – M – C → A
N Ƶ C I D V

Note: C = Borrow
� � � _ _ �

(Ref: 2.2.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Immediate SBC # Oper E9 2 2

Zero Page SBC Oper E5 2 3

Zero Page, X SBC Oper, X F5 2 4

Absolute SBC Oper ED 3 4

Absolute, X SBC Oper, X FD 3 4*

Absolute, Y SBC Oper, Y F9 3 4*

(Indirect, X) SBC (Oper, X) E1 2 6

(Indirect), Y SBC (Oper), Y F1 2 5*

*Add 1 when page boundary is crossed.

SEC Set Carry Flag SEC

N Ƶ C I D V

Operation: 1 → C _ _ 1 _ _ _

(Ref: 3.0.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied SEC 38 1 2

B-25

SED Set Decimal Mode SED

N Ƶ C I D V

Operation: 1 → D _ _ _ _ 1 _

(Ref: 3.3.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied SED F8 1 2

SEI Set Interrupt Disable Status SEI

N Ƶ C I D V

Operation: 1 → I _ _ _ 1 _ _

(Ref: 3.2.1)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied SEI 78 1 2

B-26

STA Store Accumulator in Memory STA

N Ƶ C I D V

Operation: A → M _ _ _ _ _ _

(Ref: 2.1.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page STA Oper 85 2 3

Zero Page, X STA Oper, X 95 2 4

Absolute STA Oper 8D 3 4

Absolute, X STA Oper, X 9D 3 5

Absolute, Y STA Oper, Y 99 3 5

(Indirect, X) STA (Oper, X) 81 2 6

(Indirect), Y STA (Oper), Y 91 2 6

STX Store Index X in Memory STX

N Ƶ C I D V

Operation: X → M _ _ _ _ _ _

(Ref: 7.2)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page STX Oper 86 2 3

Zero Page, Y STX Oper, Y 96 2 4

Absolute STX Oper 8E 3 4

B-27

STY
Store Index Y in Memory

STY

N Ƶ C I D V

Operation: Y → M _ _ _ _ _ _

(Ref: 7.3)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Zero Page STY Oper 84 2 3

Zero Page, X STY Oper, X 94 2 4

Absolute STY Oper 8C 3 4

TAX
Transfer Accumulator to Index X

TAX

N Ƶ C I D V

Operation: A → X � � _ _ _ _

(Ref: 7.11)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TAX AA 1 2

B-28

TAY
Transfer Accumulator to Index Y

TAY

N Ƶ C I D V

Operation: A → Y � � _ _ _ _

(Ref: 7.13)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TAY A8 1 2

TYA Transfer Index Y to Accumulator TYA

N Ƶ C I D V

Operation: Y → A � � _ _ _ _

(Ref: 7.14)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TYA 98 1 2

B-29

TSX Transfer Stack Pointer to Index X TSX

N Ƶ C I D V

Operation: S → X � � _ _ _ _

(Ref: 8.9)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TSX BA 1 2

TXA Transfer Index X to Accumulator TXA

N Ƶ C I D V

Operation: X → A � � _ _ _ _

(Ref: 7.12)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TXA 8A 1 2

TXS Transfer Index X to Stack Pointer TXS

N Ƶ C I D V

Operation: X → S _ _ _ _ _ _

(Ref: 8.8)

Addressing
Mode

Assembly Language Form
OP

CODE
No.

Bytes
No.

Cycles

Implied TXS 9A 1 2

C-1

APPENDIX C

INSTRUCTION ADDRESSING

MODES AND

RELATED EXECUTION TIMES

C-2

D-1

APPENDIX D

OPERATION CODE INSTRUCTION ADDRESSING

HEXADECIMAL SEQUENCE

D-2

00 – BRK 20 – JSR

01 – ORA – (Indirect, X) 21 – AND – (Indirect, X)

02 – Future Expansion 22 – Future Expansion

03 – Future Expansion 23 – Future Expansion

04 – Future Expansion 24 – BIT – Zero Page

05 – ORA – Zero Page 25 – AND – Zero Page

06 – ASL – Zero Page 26 – ROL – Zero Page

07 – Future Expansion 27 – Future Expansion

08 – PHP 28 – PLP

09 – ORA – Immediate 29 – AND – Immediate

0A – ASL – Accumulator 2A – ROL – Accumulator

0B – Future Expansion 2B – Future Expansion

0C – Future Expansion 2C – BIT – Absolute

0D – ORA – Absolute 2D – AND – Absolute

0E – ASL – Absolute 2E – ROL – Absolute

0F – Future Expansion 2F – Future Expansion

10 – BPL 30 – BMI

11 – ORA – (Indirect), Y 31 – AND – (Indirect), Y

12 – Future Expansion 32 – Future Expansion

13 – Future Expansion 33 – Future Expansion

14 – Future Expansion 34 – Future Expansion

15 – ORA – Zero Page, X 35 – AND – Zero Page, X

16 – ASL – Zero Page, X 36 – ROL – Zero Page, X

17 – Future Expansion 37 – Future Expansion

18 – CLC 38 – SEC

19 – ORA – Absolute, Y 39 – AND – Absolute, Y

1A – Future Expansion 3A – Future Expansion

1B – Future Expansion 3B – Future Expansion

1C – Future Expansion 3C – Future Expansion

1D – ORA – Absolute, X 3D – AND – Absolute, X

1E – ASL – Absolute, X 3E – ROL – Absolute, X

1F – Future Expansion 3F – Future Expansion

D-3

40 – RTI 60 – RTS

41 – EOR – (Indirect, X) 61 – ADC – (Indirect, X)

42 – Future Expansion 62 – Future Expansion

43 – Future Expansion 63 – Future Expansion

44 – Future Expansion 64 – Future Expansion

45 – EOR – Zero Page 65 – ADC – Zero Page

46 – LSR – Zero Page 66 – ROR – Zero Page

47 – Future Expansion 67 – Future Expansion

48 – PHA 68 – PLA

49 – EOR – Immediate 69 – ADC – Immediate

4A – LSR – Accumulator 6A – ROR – Accumulator

4B – Future Expansion 6B – Future Expansion

4C – JMP – Absolute 6C – JMP – Indirect

4D – EOR – Absolute 6D – ADC – Absolute

4E – LSR – Absolute 6E – ROR – Absolute

4F – Future Expansion 6F – Future Expansion

50 – BVC 70 – BVS

51 – EOR – (Indirect), Y 71 – ADC – (Indirect), Y

52 – Future Expansion 72 – Future Expansion

53 – Future Expansion 73 – Future Expansion

54 – Future Expansion 74 – Future Expansion

55 – EOR – Zero Page, X 75 – ADC – Zero Page, X

56 – LSR – Zero Page, X 76 – ROR – Zero Page, X

57 – Future Expansion 77 – Future Expansion

58 – CLI 78 – SEI

59 – EOR – Absolute, Y 79 – ADC – Absolute, Y

5A – Future Expansion 7A – Future Expansion

5B – Future Expansion 7B – Future Expansion

5C – Future Expansion 7C – Future Expansion

5D – EOR – Absolute, X 7D – ADC – Absolute, X

5E – LSR – Absolute, X 7E – ROR – Absolute, X

5F – Future Expansion 7F – Future Expansion

D-4

80 – Future Expansion A0 – LDY – Immediate

81 – STA – (Indirect, X) A1 – LDA – (Indirect, X)

82 – Future Expansion A2 – LDX – Immediate

83 – Future Expansion A3 – Future Expansion

84 – STY – Zero Page A4 – LDY – Zero Page

85 – STA – Zero Page A5 – LDA – Zero Page

86 – STX – Zero Page A6 – LDX – Zero Page

87 – Future Expansion A7 – Future Expansion

88 – DEY A8 – TAY

89 – Future Expansion A9 – LDA – Immediate

8A – TXA AA – TAX

8B – Future Expansion AB – Future Expansion

8C – STY – Absolute AC – LDY – Absolute

8D – STA – Absolute AD – LDA – Absolute

8E – STX – Absolute AE – LDX – Absolute

8F – Future Expansion AF – Future Expansion

90 – BCC B0 – BCS

91 – STA – (Indirect), Y B1 – LDA – (Indirect), Y

92 – Future Expansion B2 – Future Expansion

93 – Future Expansion B3 – Future Expansion

94 – STY – Zero Page, X B4 – LDY – Zero Page, X

95 – STA – Zero Page, X B5 – LDA – Zero Page, X

96 – STX – Zero Page, Y B6 – LDX – Zero Page, Y

97 – Future Expansion B7 – Future Expansion

98 – TYA B8 – CLV

99 – STA – Absolute, Y B9 – LDA – Absolute, Y

9A – TXS BA – TSX

9B – Future Expansion BB – Future Expansion

9C – Future Expansion BC – LDY – Absolute, X

9D – STA – Absolute, X BD – LDA – Absolute, X

9E – Future Expansion BE – LDX – Absolute, Y

9F – Future Expansion BF – Future Expansion

D-5

C0 – CPY – Immediate E0 – CPX – Immediate

C1 – CMP – (Indirect, X) E1 – SBC – (Indirect, X)

C2 – Future Expansion E2 – Future Expansion

C3 – Future Expansion E3 – Future Expansion

C4 – CPY – Zero Page E4 – CPX – Zero Page

C5 – CMP – Zero Page E5 – SBC – Zero Page

C6 – DEC – Zero Page E6 – INC – Zero Page

C7 – Future Expansion E7 – Future Expansion

C8 – INY E8 – INX

C9 – CMP – Immediate E9 – SBC – Immediate

CA – DEX EA – NOP

CB – Future Expansion EB – Future Expansion

CC – CPY – Absolute EC – CPX – Absolute

CD – CMP – Absolute ED – SBC – Absolute

CE – DEC – Absolute EE – INC – Absolute

CF – Future Expansion EF – Future Expansion

D0 – BNE F0 – BEQ

D1 – CMP – (Indirect), Y F1 – SBC – (Indirect), Y

D2 – Future Expansion F2 – Future Expansion

D3 – Future Expansion F3 – Future Expansion

D4 – Future Expansion F4 – Future Expansion

D5 – CMP – Zero Page, X F5 – SBC – Zero Page, X

D6 – DEC – Zero Page, X F6 – INC – Zero Page, X

D7 – Future Expansion F7 – Future Expansion

D8 – CLD F8 – SED

D9 – CMP – Absolute, Y F9 – SBC – Absolute, Y

DA – Future Expansion FA – Future Expansion

DB – Future Expansion FB – Future Expansion

DC – Future Expansion FC – Future Expansion

DD – CMP – Absolute, X FD – SBC – Absolute, X

DE – DEC – Absolute, X FE – INC – Absolute, X

DF – Future Expansion FF – Future Expansion

E-1

APPENDIX E

SUMMARY OF ADDRESSING MODES

E-2

This appendix is to serve the user in providing a reference for the

MCS650X addressing modes. Each mode of address is shown with a

symbolic illustration of the bus state at each cycle during the instruction

fetch and execution. The example number as found in the text is provided

for reference purposes.

E.1 IMPLIED ADDRESSING

Example 5.3: Illustration of implied addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 1 New
OP CODE

Ignore New
OP CODE;
Decode Old
OP CODE

3 PC + 1 PC + 2 New
OP CODE

Fetch New
OP CODE;
Execute Old
OP CODE

E-3

E.2 IMMEDIATE ADDRESSING

Example 5.4: Illustration of immediate addressing

E.3 ABSOLUTE ADDRESSING

Example 5.5: Illustration of absolute addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 2 DATA Fetch DATA,
Decode OP CODE

3 PC + 2 PC + 3 New
OP CODE

Fetch New
OP CODE;
Execute Old
OP CODE

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 2 ADL Fetch ADL,
Decode OP CODE

3 PC + 2 PC + 3 ADH Fetch ADH
Hold ADL

4 ADH, ADL PC + 3 DATA Fetch DATA

5 PC + 3 PC + 4 New
OP CODE

Fetch New
OP CODE,
Execute Old
OP CODE

E-4

E.4 ZERO PAGE ADDRESSING

Example 5.6: Illustration of zero page addressing

E.5 RELATIVE ADDRESSING – (Branch Positive, no crossing of page
 boundaries)

Example 5.8: Illustration of relative addressing branch positive taken,
 no crossing of page boundaries

Clock
Cycle Address Bus Program Counter Data Bus Comments

1 PC PC + 1 OP CODE Fetch OP CODE

2 PC + 1 PC + 2 ADL Fetch ADL,
Decode OP CODE

3 00, ADL PC + 2 DATA Fetch DATA

4 PC + 2 PC + 3 New
OP CODE

Fetch New
OP CODE,
Execute Old
OP CODE

Cycle Address Bus Data Bus
External
Operation

Internal
Operation

1 0100 OP CODE Fetch

OP CODE
Finish Previous Operation,
Increment Program
Counter to 0101

2 0101 +50 Fetch
Offset

Interpret Instruction,
Increment Program
Counter to 0102

3 0102 Next
OP CODE

Fetch Next
OP CODE

Check Flags, Add
Relative to PCL, Increment
Program Counter to
0103

4 0152 Next
OP CODE

Fetch Next
OP CODE

Transfer Results to
PCL, Increment Program
Counter to 0153

E-5

E.6 ABSOLUTE INDEXED ADDRESSING – (with pages crossing)

 Step 5 is deleted and the data in step 4 is valid when no page
 crossing occurs

Example 6.7: Absolute Indexed; with Page Crossing

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation Increment
PC to 101

2 0101 BAL Fetch BAL Interpret Instruction
Increment PC to 102

3 0102 BAH Fetch BAH Add BAL + Index
Increment PC to 103

4 BAH, BAL+X DATA
(ignore)

Fetch DATA
(Data is ignored)

Add BAH + Carry

5 BAH+1,
BAL+X

DATA Fetch DATA

6 0103 Next OP
CODE

Fetch Next
OP CODE

Finish Operations

E-6

E.7 ZERO PAGE INDEXED ADDRESSING

Example 6.8: Illustration of Zero Page Indexing

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 → PC

2 0101 BAL Fetch Base
Address Low
(BAL)

Interpret Instruction,
0102 → PC

3 00,BAL DATA
(Dis-
carded)

Fetch
Discarded
DATA

Add: BAL + X

4 00,BAL+X DATA Fetch DATA
Address

5 0102 Next OP
CODE

Fetch Next
OP CODE

Finish Operation

E-7

E.8 INDEXED INDIRECT ADDRESSING

Example 6.10: Illustration of Indexed Indirect Addressing

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 → PC

2 0101 BAL Fetch BAL Interpret Instruction,
0102 → PC

3 00,BAL Data
(Dis-
carded)

Fetch
Discarded
Data

Add BAL + X

4 00,BAL+X ADL Fetch ADL Add 1 to BAL + X

5 00,BAL+X+1 ADH Fetch ADH Hold ADH

6 ADH, ADL DATA Fetch DATA

7 0102 Next OP
CODE

Fetch Next OP
CODE

Finish Operation
0103 → PC

E-8

E.9 INDIRECT INDEXED ADDRESSING (with page crossing)

 Step 6 is deleted and the data in step 5 is valid when no page
 crossing occurs

Example 6.12: Indirect Indexed Addressing (with Page Crossing)

Cycle
Address
Bus

Data
Bus

External
Operation

Internal
Operation

1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 → PC

2 0101 IAL Fetch IAL Interpret Instruction,
0102 → PC

3 00,IAL BAL Fetch BAL Add 1 to IAL

4 00,IAL+1 BAH Fetch BAH Add BAL + Y

5 BAH,BAL+Y DATA (Dis-
carded)

Fetch DATA
(Discarded)

Add 1 to BAH

6 BAH+1
BAL+Y

DATA Fetch DATA

7 0102 Next OP
CODE

Fetch Next OP
CODE

Finish Operation
0103 → PC

F-1

APPENDIX F

MCS650X

PROGRAMMING

MODEL

F-2

G-1

APPENDIX G

DISCUSSION – INDIRECT ADDRESSING

G-2

The MCS650X microprocessors have a special form of addressing known

as Indirect. The writeup on Indirect addressing describes the basic

operation of Indirect.

It is the intent of this discussion to acquaint the user with some of the uses

and applications of Indirect addressing.

The Indirect address is really an address that would have been coded in

line as in the case of Absolute except for the fact that the address is not

known at the time the user writes the program. As has been indicated

several times in the basic body of the documentation, it is significantly

more efficient with the organization of the MCS650X to assign addresses

and implement them if the addressing structure is known. However, that

is not always possible to do. For instance, in order to minimize the coding

of a subroutine or general purpose set of coding, it is often desirable to

work with a range of addressing that is not possible to cover in a normal

index, or in the case of subroutine where it is necessary for the addresses

to be variable depending on which part of the whole program called the

address.

It is probably this discussion which best amplifies the need for calculated

addresses. It should be fairly obvious to the user that a general purpose

subroutine cannot contain the address of the operations. Therefore,

instead of having the instruction LDA followed by the value that the

programmer wants to load, in a subroutine it may be desirable to do a

Load A from a calculated or specified address.

The use of the Indirect Addressing Mode is to give the user a location in

Page Zero in which can be put the calculated address. Then the subroutine

instruction can call this calculated address using the form Load A from an

address pointed to by the next byte in program sequence. The word

“indirect” technically comes from the fact that instead of taking the

address which is immediately following the instruction, the next value in

program sequence is a pointer to the address.

G-3

The indirect pointer will be referred to from now on as IAL, because it is

a Zero Page address and, therefore, is a low order byte. The indirect

instructions are written in the form “Load A” followed by IAL.

IAL points to an address which had been previously stored into Page Zero.

This gives the user the flexibility of addressing anywhere in memory with

a calculated address. However, the real value of indirect is not in just

having Indirect but having the ability to have Indirect modified. This is the

reason for which indirect indexed instruction is implemented rather than

straight indirect. An example of the indirect indexed in subroutining is

covered in Section 6.5, But it should be noted that the indirect indexed

instruction should be used whenever the user does not know the exact

address at time of compilation. Although there may be other interesting

and esoteric uses of the indirect index instruction, this is the most common

one.

The second form of indirect is very powerful for certain types of

applications. Chapter 11 shows the use of tables which have pointers and

the advantage of running down one table of pointers until a match is

found and then using the same index to address a second table to

perform an operation. This is the classical stack processor type of

architecture but it requires a special discipline at the time a program is

originally defined. Both the indirects require a concept of memory

management that is not obvious to the novice programmer.

The concept of indexed indirect is that memory has to be viewed as a

series of tables, in which access to one set of tables is accomplished by

indexing through a list of pointers. One set of tables might be searched

to perform some type of testing or operation. Then the same index is then

used to process another set of pointers. This concept is only applicable to

operations in which a variety of inputs are being serviced. A classical

application is when several remote devices are being managed by the

same control program. An example might be having three teletypes tied

on to a device, each teletype is being manually controlled and can be

G-4

under control of the user program. In this type of message handling

environment, the control program for the teletypes does nothing more

than collect strings of data from the input device and then performs

operations on the string upon seeing a control signal, usually a carriage

return in this case of the teletype. Because any one of the teletypes can

be causing any one of the series of operations, this program does not

lend itself well to the concept of absolute addressing. In fact, most of the

subroutines which deal with the individual processing should be written

address independent. This normally allows the addition of more devices

without paying any penalty in terms of programming. Therefore, this is a

subroutine or nonabsolute type of operation in which the indirect indexed

would not apply because each of the various operations use a function

of position. In other words, one can assign a series of tables that point at

the teletype itself; another set that points at an outgoing message stream

and another set that points to a series of tables which keep the status of

the device. Each of these pointers is considered to be an individual

address at the beginning of a string. Each string is a variable length. The

teletype strings may consist of a three character message followed by a

character return or a 40 character message followed by a character

return. In the MCS650X, this system will be implemented by means of

developing a series of indirect pointers. Each teletype will have an

indirect pointer. Its I/O port has another indirect pointer that points at the

put-away string, another one that points at the teletype message output

string, another one that points at its status table. If all of the teletypes

work this way, it can be seen that the coding to put data into the input

message table is the same for all the teletypes and is totally independent

of the teletype in which data is being stored.

The index register X serves as a control for the tables so that if all tables

were sequentially organized, X would point at the proper value for each

operation. A sample operation might be: read teletype three, transfer

the data to teletype three input register, update teletype three counter,

check to see that teletype three is still active, and decide whether or not

to return to signal teletype three back. The coding to perform each of

these operations would be exactly the same as coding for teletype two,

if the tables were organized such that X was an index register for the

pointers.

G-5

This is the type of string manipulation application for which indexed

indirect was designed and only when a program can be organized for

this technique is the indirect used to its maximum potential. The

advantages for organizing for this type of approach when the problem

requires string manipulation is significant; the comprehensive I/O

program is roughly one half the memory and one fourth the execution

time of several other microprocessors which do not have this indexed

indirect feature.

H-1

APPENDIX H

REVIEW OF BINARY

AND

BINARY CODED DECIMAL

ARITHMETIC

H-2

The number 1789 is assumed by most people to mean one thousand,

seven hundred eighty-nine, or 1 x 103 + 7 x 102 + 8 x 101 + 9 x 100.

However, until the number base is defined, it might mean:

1 x 163 + 7 x 162 + 8 x 161 + 9 x 160

which is hexadecimal and the form used in the microprocessor.

In order to distinguish between numbers on different bases,

mathematicians usually write 178910 or just 1789 for base 10, or

decimal, and 178916 for base 16 for hexadecimal. Because very few

computers or I/O devices allow subscripting, all hexadecimal numbers

are preceded by a $ notation. Then 1789 means base 10 and $1789

means base 16. Why hexadecimal? This is a convenient way of

representing 2 digits in 8 bits.

The MCS650X is a byte-oriented microprocessor which means most

operations have 8-bit operations.

There are 2 ways to look at 8 bits. The first is as 8 individual bits in which

00001000 means that bit 3 (bit 7 to 0 representation) is on and all other

bits are off or as an 8-bit binary number in which case the value is:

0 x 27 + 0 x 26 + 0 x 25 + 0 x 24 + 1 x 23 +

0 x 22 + 0 x 21 + 0 x 20 = 8 or $08.

For logic analysis purposes, each bit is unique, but for arithmetic purposes,

the 8 bits are treated as a binary number.

H-3

Binary Arithmetic Rules:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 with a carry

Carry occurs when the resulting number is too long for the base.

In decimal: 8 + 4 = 2 + 10
In hexadecimal, $8 + $4 = $C (see hexadecimal details)

so that 8 + 4 has a carry in base 10 but not in base 16.

Using these rules to add 8 + 2 in binary gives the following:

00001000 8 1 x 23
00000100 +2 1 x 21

00001010 10 1 x 23 + 1 x 21

Therefore, any number from 0 to 255 may be represented in 8 bits, and
binary addition performed using the basic binary add equation:

Rj = (Aj ⊻⊻⊻⊻ Bj ⊻⊻⊻⊻ Cj – 1)

where, as defined previously, ⊻⊻⊻⊻ is notation for Exclusive-Or.

In most applications, it is also necessary to subtract. Subtract operations
either require a different hardware implementation or a new way of
representing numbers. A combination of this is to implement a simple
inverter in each bit. This would make:

00001100 12
11110011 –12

However, when subtracting 12 from 12, the result should also be 0.

00001100 +12
11110011 –12
11111111 0

However, if a carry is added to the complemented number:

 1 Carry
00001100 12
11110011 –12
00000000 = 0

If, instead of representing –12 as the complement of 12, it is represented

as the complement plus carry, the following is obtained:

H-4

11110011 = 12
 1 = Carry
11110100 = –12
00001100 +12
00000000 = 0

This representation is called two's complement and represents the way
that negative numbers are kept in the microcomputer. Below are
examples of negative numbers represented in two's complement form.

–0 = 00000000
–1 = 11111111
–2 = 11111110
–3 = 11111101
–4 = 11111100
–5 = 11111011
–6 = 11111010
–7 = 11111001
–8 = 11111000
–9 = 11110111

Hexadecimal is the representation of lowing table shows the advantages
of Hex:

Hexadecimal Binary Decimal

0 0000 00

1 0001 01

2 0010 02

3 0011 03

4 0100 04

5 0101 05

6 0110 06

7 0111 07

8 1000 08

9 1001 09

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

H-5

Because 16 is a multiple of 2, hexadecimal is a convenient shorthand for
representation of 4 binary digits or bits. The rules on arithmetic also hold.

 0100 1111 4F
+ 0110 0010 +62
 1011 0001 B1

To take advantage of this shorthand, all addresses in this manual are
shown in hexadecimal notation. It should be noted that the reader should
learn to operate in Hex as soon as possible. Continual translation back to
decimal is both time consuming and error prone. Working in Hex and
binary will quickly force learning of hexadecimal manipulation and the
familiarity with working with this convenient representation.

Although many microcomputer applications can successfully be
accomplished with binary operations, some applications are best
performed in decimal. Although the use of 1 decimal character per byte
would be a legitimate way to solve this problem, this is an inefficient use
of the capability of the 8-bit byte.

The microprocessor allows the use of packed BCD representation. This
representation is, in 4-bit form:

0 = 0000
1 = 0001
2 = 0010
3 = 0011
4 = 0100
5 = 0101
6 = 0110
7 = 0111
8 = 1000
9 = 1001

In BCD, the number 79 is represented:

 Binary BCD Hex
01111001 = 79 = 79

H-6

The microprocessor automatically takes this into account and corrects for
the fact that

Decimal BCD Hex
 79 = 01111001 79 = 01111001
+ 12 = 00010010 12 = 00010010
 91 = 10010001 88 = 10001011

The only difference between Hex and BCD representation is that the
microprocessor automatically adjusts for the fact that BCD does not allow
for Hex values A – F during add and subtract operations.

The offset which follows a branch instruction is in signed two's complement
form which means that:

 $+50 = +80 = 01010000
and $–50 = –80 = 10110000
 Proof = 00000000

The sign for this operation is in bit 7 where a 0 equals positive and a 1
equals negative.

This bit is correct for the two's complement representation but also flags
the microprocessor whether to carry or borrow from the address high
byte.

The following 4 examples represent the combinations of offsets which
might occur (all notations are in hexadecimal):

Example H.4.1: Forward reference, no page crossing

0105 BNE
0106 +55
0107 Next OP CODE

To calculate next instruction if the branch is taken

 Offset +55 01010101
 Address Low
 For next
 OP CODE 07 00000111
 5C 01011100

With no carry giving 015C as the result.

H-7

Example H.4.2: Backward reference, no page crossing

 015A BNE
 015B –55
 015C Next OP CODE

To calculate if branch is taken,

 Offset –55 = AB = 10101011
+ Address Low for

 Next OP CODE +5C = 5C = 01011100
 07 07 00000111

The carry is expected because of the negative offset and is ignored, thus
giving 0107 as the result.

Example H.4.3: Backward reference if page boundary crossed

 0105 BNE
 0106 –55
 0107 Next OP CODE

To calculate if branch is taken, first calculate a low byte

 Offset –55 = AB = 10101011
+ Address Low for

 Next OP CODE +07 = 07 = 00000111
 B2 = B2 = 10110010

There is no carry from a negative offset; therefore, a carry must be
made:

 –1 = –1 = FF = 11111111
 + Address High = 01 =01 = 00000001
 00 =00 = 00000000

This gives 00B2 as a result.

Example H.4.4: Forward reference across Page boundary

 00B0 BNE
 00B1 +55
 00B2 Next OP CODE

To calculate next instruction if branch is taken,

H-8

 Offset 55 = 01010101
+ Address Low for

 Next OP CODE B2 = 10110010
 07 = 00000111

with carry on positive number.

 +1 1 = 00000001
 + Address High 00 = 00000000
 1 = 00000001

which gives 0107.

A
S

S
EM

B
LE

R
 D

IR
EC

TI
V

ES

 O
P

T
–

 I
F

U
S

ED
 M

U
S

T
B

E
TH

E
FI

R
S

T
EX

EC
U

TA
B

LE
 S

TA
TE

M
EN

T
IN

 T
H

E
P

R
O

G
R

A
M

O

P
TI

O
N

S
 A

R
E:

 (
O

P
TI

O
N

S
 L

IS
TE

D
 A

R
E

TH
E

D
EF

A
U

LT
 V

A
LU

E
TU

R
N

ED
 O

FF
 B

Y
 (

N
O

)
P

R
EF

IX

 •

 C
O

U
N

T
(C

O
U

 O
R

 C
N

T)
 –

 L
IS

T
A

LL
 I

N
S

TR
U

C
TI

O
N

S
 A

N
D

 T
H

EI
R

 U
S

EA
G

E.

 •

 N
O

 G
EN

ER
A

TE
 (

N
O

G
)

–
 D

O
 N

O
T

G
EN

ER
A

TE
 M

O
R

E
TH

A
N

 O
N

E
LI

N
E

O
F

C
O

D
E

FO
R

 A
S

C
II

S
TR

IN
G

S
.

 •

 X
R

EF
 (

X
R

E)
 –

 P
R

O
D

U
C

E
A

 C
R

O
S

S
R

EF
ER

EN
C

E
LI

S
T

IN
 T

H
E

S
Y

M
BO

L
TA

B
LE

.

 •

 E
R

R
O

R
S

 (
ER

R
)

–
C

R
EA

TE
 A

N
 E

R
R

O
R

 F
IL

E.

 •

 M
EM

O
R

Y
 (

M
EM

)
–

 C
R

EA
TE

 A
N

 A
S

S
EM

B
LE

R
 O

BJ
EC

T
O

U
TP

U
T

FI
LE

.

 •

 L
IS

T
(L

IS
)

–
P

R
O

D
U

C
E

A
 F

U
LL

 A
S

S
EM

B
LY

 L
IS

TI
N

G

B
Y

TE
 –

 P
R

O
D

U
C

ES
 A

 S
IN

G
LE

 B
Y

TE
 I

N
 M

EM
O

RY
 E

Q
U

A
L

TO
 E

A
C

H
 O

P
ER

A
N

D
 S

P
EC

IF
IE

D
.

W
O

R
D

 –
 P

R
O

D
U

C
ES

 T
W

O
 B

Y
TE

S
 I

N
 M

EM
O

R
Y

 E
Q

U
A

L
TO

 E
A

C
H

 O
P

ER
A

N
D

 S
P

EC
IF

IE
D

.
*=

 –
 D

EF
IN

ES
 T

H
E

B
EG

IN
N

IN
G

 O
F

A
 N

EW
 P

RO
G

R
A

M
 C

O
U

N
TE

R
 S

EQ
U

EN
C

E.

P
A

G
E

–
 A

D
V

A
N

C
ES

 T
H

E
LI

S
TI

N
G

 T
O

 T
H

E
TO

P
 O

F
A

 N
EW

 P
A

G
E.

EN

D
 –

 D
EF

IN
ES

 T
H

E
EN

D
 O

F
A

 S
O

U
R

C
E

P
R

O
G

R
A

M
.

 LA
B

EL
S

:
 LA

B
EL

S
 B

EG
IN

 I
N

 C
O

LU
M

N
 1

 A
N

D
 A

R
E

S
EP

ER
A

TE
D

 F
R

O
M

 T
H

E
IN

S
TR

U
C

TI
O

N
 B

Y
 A

T
LE

A
S

T
O

N
E

S
P

A
C

E.

LA
B

LE
S

 C
A

N
 B

E
U

P
 T

O
 S

IX
 A

LP
H

A
N

U
M

ER
IC

 C
H

A
R

A
C

TE
R

S
 L

O
N

G
 A

N
D

 M
U

S
T

B
EG

IN
 W

IT
H

 A
N

 A
LP

H
A

 C
H

A
R

A
C

TE
R

.
A

,
X

,
Y

,
S

, A
N

D
 P

 A
R

E
R

ES
ER

V
ED

 A
N

D
 C

A
N

N
O

T
B

E
U

S
ED

 A
S

 L
A

B
EL

S
 T

O
 I

N
S

TR
U

C
TI

O
N

S
.

LA
B

EL
 –

 E
X

P
R

ES
S

IO
N

 C
A

N
 B

E
U

S
ED

 T
O

 E
Q

U
A

TE
 L

A
B

EL
S

 T
O

 I
N

S
TR

U
C

TI
O

N
S

.
LA

B
EL

 *
=

*
+

 N
 C

A
N

 B
E

U
S

ED
 T

O
 R

ES
ER

V
E

A
R

EA
S

 O
F

M
EM

O
RY

 C

H
A

R
A

C
TE

R
S

 U
S

ED
 A

S
 S

P
EC

IA
L

P
R

EF
IX

ES
:

 •

IN

D
IC

A
TE

S
 A

N
 A

S
S

EM
B

LE
R

 D
IR

EC
TI

V
E

 #

 S
P

EC
IF

IE
S

 T
H

E
IM

M
ED

IA
TE

 M
O

D
E

O
F

A
D

D
R

ES
S

IN
G

 $
 S

P
EC

IF
IE

S
A

 H
EX

A
D

EC
IM

A
L

N
U

M
B

ER

 @

 S
P

EC
IF

IE
S

 A
N

 O
C

TA
L

N
U

M
B

ER

 %

 S
P

EC
IF

IE
S

A
 B

IN
A

R
Y

 N
U

M
B

ER

 ‘

S

P
EC

IF
IE

S
 A

N
 A

S
C

II
LI

TE
R

A
L

C
H

A
R

A
C

TE
R

 (
)

IN
D

IC
A

TE
S

 I
N

D
IR

EC
T

A
D

D
R

ES
S

IN
G

 ;
 I

N
 C

O
LU

M
N

 1
 I

N
D

IC
A

TE
S

 A
 C

O
M

M
EN

T

