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CHAPTER 1

INTRODUCTORY REMARKS

1.0 MANUAL INTRODUCTION

Welcome to the MCS650X product family. This manual is designed to
work in conjunction with the hardware Manual which describes the basic
hardware considerations when using the MOS Technology, Inc.
microcomputer family.

Before reading this manual, it is suggested that the reader acquaint
himself with the hardware Manual in order to understand the components
available in this system, how these components are interconnected, and
their basic architecture. Developed in this manual is the concept of
microprocessor internal architecture and how it is used, with attention
given to input/output considerations. Familiarity with the hardware will
facilitate easier understanding of these important concepts.

In order to best serve the total customer base, this manual is written in
two levels. The first is a very basic introduction to the MCS650X family,
and the second level is for the user who has to refer to the manual on
more than an occasional basis and who wants to rapidly scan and find
specific sections. For the user who is quite familiar with programming and
the MCS650X instruction set, the appendices are the best reference in the
sense that all the data which is discussed in detail in the manual is
summarized in a series of tables for convenience.

It is recommended that the user who is an experienced programmer and
familiar with microprocessors still take the time to read through the
manual in detail. Some of the architectural concepts are different from
those found in second generation machines and this manual instructs the
user how to optimize the utilization of the microprocessor while providing
an introduction of its basic concepts.



Criticism of this manual is welcomed at all times. Of particular interest are
cases where one could not, by use of the index and appendix, rapidly
find the answer to a question which developed in the course of designing
a microprocessor system. Welcomed are any comments which will
enhance the content and format of this manual in future editions or
addendums.

1.1 MICROPROCESSOR ARCHITECTURE

The MCS6501, MCS6502, MCS6503, MCS650X, and HCS6503 are all
8-bit microprocessors. That means that 8 bits of data are transferred or
operated upon during each instruction cycle or operation cycle.

All devices in the MCS650X family operate on data 8 bits at a time,
although some of the operations will look like serial or 16-bit wide
operations. In a future section, discussed will be the use of sequential
operations on an 8-bit basis and how one can accomplish 16-bit effective
operands and addressing.

The computer industry, for some time, has been treating 8-bit
combinations of data by a term known as a “byte.” In many large
computers which operate simultaneously on multiple bytes of data, the
number of bytes which are transferred and operated on by the machine
in parallel are called a “word.” Because these microprocessors are 8-bit
microprocessors, the words and bytes are of equal length. Therefore, for
convenience through the discussion of the basic 8-bit processors, “byte”
and “word” will be used synonymously although in some of the expanded
versions there will exist a 16-bit word composed of two 8-bit bytes.



CHAPTER 2

THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 THE DATA BUS

Although most of the following discussion will consider how one operates
with a general purpose register called the accumulator, it must be
understood that data has to transfer between the accumulator and
outside sources by means of passing through the microprocessor to 8 lines
called the data bus. The outside sources include the program which
controls the microprocessor, the memory which will be used as interim
storage for internal registers when they are to be used in a current
operation, and the actual communications to the world through
input /output ports. Later in this document performance of transfers to and
from each of these devices will be discussed. However, at present,
discussion will center on the microprocessor itself.

| DATA BUS (8 BIT PARALLEL) |

ACCUMULATOR MEMORY
A M

Partial Block Diagram of MCS650X
FIGURE 2.1

The only operation of the data bus is to transfer data between memory
and the processor's internal registers such as the accumulator. Figure 2.1
displays the basic communication between the accumulator, A, and the
memory, M, through the use of 8 bi-directional data lines called the data
bus.



2.1 THE ACCUMULATOR

The accumulator is a register in which data is kept on which operations
are performed. All operations between memory locations must be
communicated through the accumulator or one of the auxiliary index
registers. The accumulator is used as a temporary storage in moving data
from one memory location to another. Therefore, the first use for the
accumulator (A) is just in transferring data from memory to the
accumulator or from the accumulator to memory. One can bring data into
the accumulator, perform operations such as AND/OR on it, test the results
of those operations, set new bits into it, or transfer it back out to the
outside world. It serves as an interim storage for a series of operations
such as adding 2 values together; where one of them is loaded into the
accumulator, the second one added to it, and the results stored in the
accumulator. The accumulator really acts as two functions: 1) It is one of
the primary storage points for the machine; 2) It is the point at which
intermediate results are normally stored.

2.1.1 LDA - Load Accumulator with Memory

When instruction LDA is executed by the microprocessor, data is
transferred from memory to the accumulator and stored in the
accumulator.

Rather than continuing to give a word picture of the operation, introduced
will be the symbolic representation M — A, where the arrow means
“transfer to.” Therefore the LDA instruction symbolic representation is
read, “memory transferred to the accumulator.”

LDA affects the contents of the accumulator, does not affect the carry or
overflow flags; sets the zero flag if the accumulator is zero as a result of
the LDA, otherwise resets the zero flag; sets the negative flag if bit 7 of
the accumulator is a 1, otherwise resets the negative flag.

Although yet to be developed is the concept of addressing modes, for
reference purpose, LDA is a “Group One” instruction and has all of the
major addressing modes of the machine available to it as stated in
Appendix A. These addressing modes include Immediate; Absolute; Zero
Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed Indirect; and
Indirect Indexed.



2.1.2 STA — Store Accumulator in Memory

This instruction transfers the contents of the accumulator to memory.

The symbolic representation for this instruction is A — M. This instruction
affects none of the flags in the processor status register and does not
affect the accumulator.

It is a “Group One” instruction and has the following addressing modes
available to it: Absolute; Zero Page; Absolute,X; Absolute,Y; Zero
Page,X; Indexed Indirect; and Indirect Indexed.



2.2 THE ARITHMETIC UNIT

One of the functions to be expected from any computer is the ability to
compute or perform arithmetic operations. Even in a simple control
problem, one often finds it useful to add 2 numbers in order to determine
that a value has been reached, or subtract 2 numbers to calculate a new
value which must be obtained. In addition, many problems involve some
rudimentary form of decimal or binary arithmetic; certainly many
applications of the microprocessor will involve both. The MCS650X has
an 8-bit arithmetic unit which interfaces to the accumulator as shown in
Figure 2.2.

| DATA BUS |
ARITHMETIC
LOGIC ACCUMULATOR MEMORY
UNIT — A M
ALU

Partial Block Diagram including Arithmetic Logic Unit of MCS650X
FIGURE 2.2

The arithmetic unit is composed of several major parts. The most important
of these is the circuitry necessary to perform a two’s complement add of
8-bit parallel values and generate an 8 parallel bit binary result plus a
carry. A review of binary and binary coded decimal (BCD) arithmetic is
presented in Appendix H. However, a quick review of the concept of
“carry” is in order. The largest range than can be represented in an 8-
bit number is 256 with values ranging between O and 255. If we add
any 2 numbers which result in a sum which is greater than 255 we
represent the result with a ninth bit plus the 8 bits of the excess over 255.
The ninth bit is called “carry.”



2.2.1 ADC - Add Memory to Accumulator with Carry

This instruction adds the value of memory and carry from the previous
operation to the value of the accumulator and stores the result in the
accumulator.

The symbolic representation for this instruction is: A+ M + C > A

This instruction affects the accumulator; sets the carry flag when the sum
of a binary add exceeds 255 or when the sum of a decimal add exceeds
99, otherwise carry is reset. The overflow flag is set when the sign or bit
7 is changed due to the result exceeding +127 or —128, otherwise
overflow is reset. The negative flag is set if the accumulator result contains
bit 7 on, otherwise the negative flag is reset. The zero flag is set if the
accumulator result is O, otherwise the zero flag is reset.

It is a “Group One” instruction and has the following addressing modes:
Immediate; Absolute; Zero Page; Absolute, X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

The ninth bit of the result is stored in the carry flag and the remaining 8
bits reside in the accumulator. The carry flag can be thought of as a flag
bit which is remote from the accumulator itself but which is directly
affected by accumulator operations as though it were a ninth bit in the
accumulator. The primary reason for not viewing the carry bit as merely
a ninth bit in the accumulator is that one has program control over its state
by being able to set (to “1”) or clear (to “0”) the bit and, of course, it is
not part of the 8-bit accumulator in data transfer operations. Examples
employing the Add with Carry operation follow.

Example 2.1: Add 2 numbers with carry; no carry generation

0000 1101 13 =(A)*
1101 0011 211 = (M)*
1 1 = CARRY
Carry =[0] 1110 0001 225=(A)

*(A) and (M) refer to the “contents” of the accumulator and “contents” of
memory respectively.



Example 2.2: Add 2 numbers with carry; carry generation

1111 1110 254 = (A)
0000 0110 6 = (M)
1 1 = CARRY
Carry =[1] 0000 0101 5 =(A)

While the accumulator contains “5,” the carry flag signals the user that
the result exceeded 255 and, therefore, the result can be properly
interpreted as 256 + 5 = 261.

2.2.1.0 Multiple Precision Addition

To perform the addition of 2 numbers, one issues to the microprocessor
an ADC instruction which adds the memory and the accumulator and
stores the results in the accumulator with the carry bit going set if the
results exceeded 255.

To add numbers which had significantly higher value than 255, it would
be necessary to represent these numbers by a series of serial 8-bit
numbers. With the 16 bits in 2 serial 8-bit numbers, it is possible to
represent binary numbers of greater than 65,000 in value. In order to
add two 16-bit numbers together and thus accomplish double precision
addition, one first loads the lowest byte of one number into the
accumulator, clears the carry flag and then adds the second number to
the first number in the accumulator using the ADC command. One would
then store this result into another memory location using the STA command.
The carry flag would now represent the carry from the lowest byte to the
highest byte. One could then load the high order byte of the first number,
add with carry again to the high value of the second number, and store
the result in the high order byte of the result. Thus, it can be seen that the
carry allows us to perform as much precision arithmetic as is necessary.
The example listing below displays the commands used to execute the
addition of two 16-bit numbers.



Example 2.3: Adding two 16-bit numbers

High Order Byte Low Order byte
First Number H1 L1
Second Number H2 L2
Result of Addition H3 L3
LDA L1 Load low order byte, first number
CLC Clear carry flag (carry = 0)
ADC L2 Add L1 to low order byte, second number
STA L3 Store result in memory, carry flag is still set if set in

ADC operation

LDA H1 Load high order byte, first number

ADC H2 Add H1 and carry value from first ADC operation to
high order byte, second number

STA H3 Store result in memory

In this example it was necessary to clear the carry flag before starting
the add instruction. This, of course, means that commands exist that set
and clear the carry flag allowing for addition without values generated
from the prior operation. One could also, at the end of the program,
check to see if the result exceeded 16 bits by testing the carry flag.
Exactly how one alters and tests flags will be discussed in the Flag and
Branches Section. The examples below display the concept of carry from
the addition of the low order bytes.

Example 2.4: Add two 16-bit numbers, no carry from low order add

0000 0001 0000 0010 258
0001 0000 0001 0000 4112
Add low order bytes: (clear carry)
0000 0010 (A)
0001 0000 (M)
Carry = [0/ 0001 0010 (A)
Add high order bytes (carry = 0):
0000 0001 (A)
0001 0000 (M)
0 CARRY
Carry = [0] 0001 0001 (A)
Result = 0001 000l 0001 0010 = 4370



Example 2.5: Add two 16-bit numbers, with carry from low order
add

0000 0001 1000 0000 384
0000 0000 1000 0000 128
Add low order bytes: (clear carry)
1000 0000 (A)
1000 0000 (M)
Carry =[1] 0000 0000 (A)
Add high order bytes: (carry = 1)
0000 0001 (A)
0000 0000 (M)
1 CARRY
Carry =[0] 0000 0010 (A)
Result = 0000 0010 0000 0000 =512

2.2.1.1 Signed Arithmetic

It is possible to look at the add operation and the way data is
represented in memory in a different way. If, in the 16-bit problem
(Examples 2.4 and 2.5), one were working with 15 bits of precision (in
other words, 15 bits of valid data) plus 1 bit of sign (O for positive and
1 for negative), it would be possible to perform signed binary arithmetic
without changing the adder, but by merely changing the way the results
are interpreted. In order to facilitate this concept, the microprocessor has
the ability to represent positive or negative numbers by means of a sign
flag which will be discussed at length in Section 3.7. In the MCS650X
family, bit 7 is the sign position bit. This means that the highest order byte
in a series of bytes should have the sign in the eighth position. If, for
simplicity, one talks about signed 8-bit numbers, it would mean that one
was allowed only 128 combinations of each sign because that is the most
that can be represented in 7 bits, with the eighth bit or the highest bit
reserved for the sign position.
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In the following examples of signed arithmetic it should be noted that
operations are occurring on a 7-bit field of numbers and that any carry
generated out of that field will reside in the eighth bit — not in the carry
flag discussed during the add operations. The generation of a carry out
of the field is the same as when adding two 8-bit numbers, except for
the fact that the normal carry flag does not correctly represent the fact
that the field has been exceeded. This is because the true carry from
adding the two 7-bit numbers resides in the sign bit position. Therefore,
the carry flag has no real meaning. Instead, there is a separate flag, the
overflow flag, used to indicate when a carry from 7 bits has occurred
and allows the user to write correction programs.

In each example, the negative numbers are in two's complement form.
Also included in each result will be the status of the carry and overflow
flags. The overflow flag is set whenever the sign bit (bit 7) is changed as
a result of the operation.

Example 2.6: Add 2 positive numbers with no overflow

0000 0101 +5 (A)
0000 0111 _+7 (M)
Carry =[0] 0000 1100 +12 (A)

Overflow = [0] “0” in bit 7 indicates positive result.
Note that both the carry and overflow flag remain
cleared.
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Example 2.7: Add 2 positive numbers with overflow

0111 1111 +127 (A)
0000 0010 + 2 (M)
Carry =[0] 1000 0001 “-127" (A)

Overflow =[1] “1” in bit 7 indicates negative result and the two's
complement of the result is 127; however, the overflow
flag is set indicating the allowable range was exceeded
in the addition.

Therefore, examination of the overflow indicated that the result was in
fact not negative but that the bit 7 position represented an overflow
beyond the value of 127. Hence the user is flagged of an incorrect result
and a correction routine (program) must follow.

Example 2.8: Add positive and negative number with positive result

0000 0101 +5 (A
11111101 =3 (M)
Carry =[1/ 0000 0010 +2  (A)

Overflow 2@ “0” in bit 7 indicates positive result. (Recall that
though the carry flag is set, it has no meaning

in signed operations.)

Example 2.9: Add positive and negative number with negative result

0000 0101 +5 (A)
11111001 =7 (M)
Carry =[0] 1111 1110 =2 (A)
Overflow = [0] “1” in bit 7 indicates negative result.

Example 2.10: Add 2 negative numbers without overflow

1111 1011 =5 (A)
11111001 =7 (M)
Carry =[1] 1111 0100 -12 (A)

Overflow = [0] “1” in bit 7 indicates negative result.
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Example 2.11: Add 2 negative nhumbers with overflow

1011 1110 —-66 (A)
1011 1111 —65 (M)
Carry =[1/ 0111 1101 “+125"(A)

Overflow ZE “0” indicates positive result, but the overflow
flag is set indicating that the allowable range
was exceeded in the operation. Without the
overflow indication, the result would be inter-
preted as +125. The overflow, however,
indicated that the result was negative and
exceeded the value —128. Hence the user is
flagged of an incorrect result, indicating the
need for a correction routine.

2.2.1.2 Decimal Addition

There is a way for the user to organize data for decimal operations. The
MOS Technology, Inc. MCS650X microprocessors have a modified adder
which allows the user to represent his numbers as two 4-bit binary coded
decimals (BCD) numbers packed into a single byte. This is a unique
feature of the MCS650X family in that the operation in the following
example can be performed.

Example 2.12: Decimal addition

CLC Clear Carry Flag
SED Set Decimal Mode
LDA 0111 1001 79

ADC 0001 0100 +14

STA 1001 0011 93

The microprocessor adder has the unique capability of performing real
time correction to the normal expected binary result without any direct
interference from the programmer. Other popular microprocessors
require a separate instruction (Decimal Adjust) which corrects the direct
binary result of the arithmetic unit to obtain the same final results as are
available on this microprocessor directly.

In order to make the same arithmetic unit perform either as a binary

adder or as a decimal adder, the user chooses the mode in which he is
going to operate (either decimal or binary) by setting another flip-flop
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in the microprocessor called the decimal flag. As shown in this example,
one not only initializes the adder by clearing the carry flag, but also puts
the processor into decimal mode with the SED instruction. Even though this
also requires 1 instruction, it is possible to put the machine in decimal
mode once and perform many long strings of decimal numbers without
further user intervention. The “Decimal Adjust” feature on other
microprocessors requires programming subsequent to each binary
operation.

2.2.1.3 Add Summary

In summary, the basic arithmetic unit is a binary adder which, under
control of the ADC command, performs binary arithmetic on the
accumulator and data, storing the result in the accumulator. Depending
on the way the user looks at the data which is presented to the adder
and the results which are obtained from it, the user can determine whether
or not the result exceeds 255 binary or 99 decimal; he can perform
precision arithmetic by use of the ninth bit or carry flag; he can control
whether or not the microprocessor is a decimal adder by setting the
decimal mode; and he can represent his numbers as signed binary
numbers by analyzing other flags that are set in the machine.

2.2.2 SBC — Subtract Memory from Accumulator with Borrow

This instruction subtracts the value of memory and borrow from the value
of the accumulator, using two's complement arithmetic, and stores the
result in the accumulator. Borrow is defined as the carry flag
complemented; therefore, a resultant carry flag indicates that a borrow
has not occurred.

The symbolic representation for this instruction is:

A-M-C- A

This instruction affects the accumulator. The carry flag is set if the result is
greater than or equal to 0. The carry flag is reset: when the result is less

than O, indicating a borrow. The overflow flag is set when the result
exceeds +127 or =127, otherwise it is reset. The negative flag is set if the
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result in the accumulator has bit 7 on, otherwise it is reset. The Z flag is
set if the result in the accumulator is O, otherwise it is reset.

It is a “Group One” instruction. It has addressing modes Immediate;
Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed
Indirect; and Indirect Indexed.

In a binary machine, the classical way to perform arithmetic is by using
two's complement notation. In using two’s compliment notation, any
subtraction operation becomes a sequence of bit complementations and
additions. This reduces the complexity of the circuits required to perform
a subtraction.

When the SBC instruction is used in single precision subtraction, there will
normally be no borrow; therefore, the programmer must set the carry
flag, by using the SEC (Set carry to 1) instruction, before using the SBC
instruction. The microprocessor adds the carry flag to the complemented
memory data, resulting in a true two's complement form of the memory
value with its sign inverted.

Example 2.13: Subtract 2 numbers with borrow; positive result

Assume a single precision subtraction where A contains 5 and M contains
3. The carry flag must be set to a 1 using the SEC instruction, thereby
representing the no-borrow condition.

The adder changes the sign of M by taking the two's complement of M.
This involves complementing M and adding the carry bit.

M= 3 0000 0011
Complemented M 1111 1100
AddC= 1 1
-M =-3 1111 1101

The adder adds A and the two's complement —M together. This operation
occurs simultaneously with the complement operation.

A= 5 0000 0101
Add —-M = -3 11111101
Carry =[1] 0000 0010 =+2

The presence of the carry flag after this operation indicates that No
Borrow was required, therefore the result is +2.
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Example 2.14: Subtract 2 numbers with borrow; negative result

Assume a single precision subtraction where A contains 5 and M contains
6. Set the carry flag to a 1 with SEC to indicate No Borrow.

M=6 0000 0110
Complemented M 1111 1001
Add C=1 1
-M=-6 1111 1010

A=5 0000 0101

Add -M = -6 1111 1010
Carry = [0/ 1111 1111 ==1

The absence of the carry flag after this operation indicates that a borrow
was required, therefore the result is a —1 in two's complement form. The
absolute (unsigned) result in straight binary could be obtained by taking
the two's complement of this number.

2.2.2.0 Multiple Precision Subtraction

Double precision subtraction is implemented in a fashion similar to
addition. An example for subtracting a 16-bit number and storing the
result follows:

Example 2.15: Subtracting two 16-bit numbers

High Order Byte Low Order Byte

First Number Second Number H1 L1
Second Number H2 L2
Result of Subtraction H3 L3
SEC Set Carry

LDA L1 Load Low Order Byte, first Number

SBC L2 Subtract with Borrow, Low Order Byte of Second
Number from L1

STA L3 Store Result in Memory

LDA H1 Load High Order Byte, First Number

SBC H2 Subtract with Borrow, High Order Byte of Second
Number from H1

STA H3 Store Result in Memory
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Example 2.16: Subtract in double precision format, positive result

Assume a double precision subtraction where 255 is to be subtracted
from 512 for an example. Since there has been no borrow coming into
this subtraction operation, the carry flag must be set.

Following are the 2 numbers in binary form:

High Order Byte Low Order Byte
A field = 512 0000 0010 0000 0000
M field = 255 0000 0000 1111 1111

Since the adder can only operate on single byte numbers, the
programmer must operate on the low order bytes first.

M= 1111 1111

Complemented M = 0000 0000
Add C = 1

-M 0000 0001

A= 0000 0000

Add -M = 0000 0001

Carry = [0] 0000 0001

The carry is brought over to the subtract operation on the high order
bytes.

M= 0000 0000
Complemented M = 1111 1111
AddC=0 0

-M 1111 1111

A= 0000 0010

Add-M= 1111 1111
Carry =[1] 0000 0001

The result in binary form follows:
Carry =[1] 0000 0001 0000 0001 = +257
The presence of the carry flag after the highest order byte subtraction

indicates that the entire number required No Borrow, therefore it is a
positive number in straight binary form.
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Example 2.17: Subtract in double precision format; negative result

Now assume a double precision subtraction where 512 is to be subtracted
from 255. Again, since there has been no borrow coming into this
subtraction operation, the carry flag must be set.

Following are the two numbers in binary form:

High Order Byte Low Order Byte
A field = 255 0000 0000 1111 1111
M field =512 0000 0010 0000 0000

Operating on the low order byte:

M = 0000 0000

M= 1111 1111
AddC=1 1
Carry =[1] 0000 0000 =-M

A=1111 1111
Add =M =/[1] 0000 0000
Carry =[1] 1111 1111

The presence of the carry = 1 indicates no borrow.

The carry is now brought over to the high order byte subtract operation:

M= 0000 0010

M= 1111 1101

Add C =1 1
1111 1110

_ A= 0000 0000
M+C= 1111 1110
Carry =[0] 1111 1110

The result in binary form is:

Carry =[0] 1111 1110 1111 1111 =-257
Carry = [0/ indicates the presence of a borrow, therefore the
number is negative and is in two’s complement form.

2.2.2.1 Signed Arithmetic

Signed numbers can be subtracted, using the SBC instruction, just as easily
as they can be added. The microprocessor converts the numbers from
memory to its two's complemented form and then adds it to the value of
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the accumulator just as it does in an unsigned subtract described in Section
2.2.2. The addition operation is identical to that described, and to the
examples given in Section 2.2.1.1

It should be remembered that before using the SBC instruction, either
signed or unsigned, the carry flag must be set to a 1 in order to indicate
a no borrow condition. The resultant carry flag has no meaning after a
signed arithmetic operation.

2.2.2.2 Decimal Subtract

As indicated in the Section 2.2.1.2, it is possible to represent numbers as
packed 4-bit BCD numbers. In this case, which is again unique to this
microprocessor, it is possible to make the adder act as though it is a
decimal adder. In this case, the function of the machine is one of correcting
for the subtraction of positive numbers by complementing the number,
setting the carry and performing binary arithmetic with an automatic
correction at the time the result is stored in the accumulator. The unique
capabilities of this adder give the results as shown in the next example.

Example 2.18: Decimal Subtraction

SED Set Decimal Mode
SEC Set Carry Flag
LDA 0100 0100 44

SBC 0010 1001 29

STA 0001 0101 15

By setting the decimal mode and setting the carry flag, one can subtract
number 29 from number 44 with the results in the accumulator
automatically being 15.

As has been indicated, one can perform both addition and subtraction
when the machine is set in decimal mode, treating the bytes to be added
as unsigned, positive, binary coded digits. The carry flag in addition
represents the case when the result in the number exceeded 99 and in
subtraction the absence of the carry flag represents a true borrow
situation.
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2.2.3 Carry and Overflow During Arithmetic Operations

It is necessary to set or reset the carry flag prior to the beginning of any
arithmetic instruction. Because the carry flag is set or reset as a result of
the arithmetic operation at the end of the loop, one can test the flag to
determine whether or not a carry or a borrow occurred in the operation.
By proper use of the overflow flag one can treat the high order bit of
any set of bytes as a sign bit as long as the results of the negative
numbers are carried in two’s complement form. The microprocessor also
sets the overflow flip-flop to indicate when a result larger than can be
stored in a 7-bit field has occurred and when the resultant sign is
incorrect. In binary arithmetic the carry flag set indicates results in excess
of 256, and in decimal arithmetic indicates results in excess of 99.
Although the input carry is very important to these operations, a simple
rule is: set the carry flag prior to subtract; clear the carry flag prior to
add.

2.2.4 Logical Operands

In implementing a parallel binary adder there are several useful logic
functions which are subsets of a binary add operation. In the MCS650X
family, these subsets are used to implement the logical operands “AND,”
“OR,” and “EOR” (Exclusive Or). These operations are used to test and
control bit manipulations.

2.2.4.1 AND — Memory with Accumulator

The AND instructions transfer the accumulator and memory to the adder
which performs a bit-by-bit AND operation and stores the result back in
the accumulator.

This instruction affects the accumulator; sets the zero flag if the result in
the accumulator is O, otherwise resets the zero flag; sets the negative
flag if the result in the accumulator has bit 7 on, otherwise resets the

negative flag.

This is symbolically represented by AAM = A,
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AND is a “Group One” instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute, X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses for the AND operation is that of resetting a bit in memory.
In the example below.

Example 2.19: Clearing a bit with AND

LDA 1100 X111, where XisO or 1
AND 1111 0111
STA 1100 0111

A byte is loaded into the accumulator and the AND instruction resets the

accumulator bit 3 to 0. The accumulator is then stored back into memory,
thereby resetting the bit.

2.2.4.2 ORA “OR” Memory with Accumulator

The ORA instruction transfers the memory and the accumulator to the
adder which performs a binary “OR” on a bit-by-bit basis and stores the
result in the accumulator.

This is indicated symbolically by AV M — A.

This instruction affects the accumulator; sets the zero flag if the result in
the accumulator is O, otherwise resets the zero flag; sets the negative flag
if the result in the accumulator has bit 7 on, otherwise resets the negative
flag. ORA is a “Group One” instruction. It has the addressing modes
Immediate; Absolute; Zero Page; Absolute, X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

To set a bit, the OR instruction is used as shown below:

Example 2.20: Setting a bit with OR

LDA 1110 X111, where Xis O or 1
ORA 0000 1000
STA 1110 1111

2.2.4.3 EOR — “Exclusive OR” Memory with Accumulator

The EOR instruction transfers the memory and the accumulator to the
adder which performs a binary “EXCLUSIVE OR” on a bit-by-bit basis
and stores the result in the accumulator.
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This is indicated symbolically by AYM — A,

This instruction affects the accumulator; sets the zero flag if the result in
the accumulator is O, otherwise resets the zero flag; sets the negative flag
if the result in the accumulator has bit 7 on, otherwise resets the negative
flag.

EOR is a “Group One” instruction having addressing modes of Immediate;
Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed

Indirect; and Indirect Indexed.

One of the uses of the EOR instruction is in complementing bytes. This is
accomplished below by exclusive ORAing the byte with all 1's.

Example 2.21: Complementing a byte with EOR

LDA 1010 1111
EOR 1111 1111
STA 0101 0000
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CHAPTER 3

CONCEPTS OF FLAGS AND STATUS REGISTER

One can view each of the individual flags or status bits in the machine as
individual flip-flops. The carry flag can be considered the ninth bit of an
arithmetic operation. The decimal mode flag is set and cleared by the
user and used by the microprocessor to select either binary or decimal
mode. For programming convenience the microprocessor treats all of the
flags or status bits as component bits of a single 8-bit register. In Figure
3.1 the processor status register (or “P” register) is added to the block

diagram.
| DATA BUS |
ACCUMULATOR R o MEMORY
STATUS
AL
v K= A REGISTER M
P

Partial Block Diagram of MCS650X including P Register
FIGURE 3.1
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Each of the individual flags or bits has its own particular meaning in the
microprocessor as defined in Figure 3.2.

N Vv B D | Z C PROCESSOR STATUS REGISTER

CARRY

ZERO RESULT

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND

EXPANSION

OVERFLOW

NEGATIVE RESULT
Processor Status Register
FIGURE 3.2

3.0  CARRY FLAG (C)

The carry bit which is modified as a result of specific arithmetic operations
or by a set or clear carry command has been discussed previously. In the
case of shift and rotate instruction, the carry bit is used as a ninth bit as
it is in the arithmetic operation. The carry flag can be set or reset by the
programmer. A SEC instruction will set and a CLC instruction will reset the
carry flag. Operations which affect the carry are ADC, ASL, CLC, CMP,
CPX, CPY, LSR, PLP, ROL, RTI, SBC, SEC.

3.0.1 SEC —Set Carry Flag

This instruction initializes the carry flag to a 1. This operation should
normally precede a SBC loop. It is also useful when used with a ROL
instruction tfo initialize a bit in memory to a 1.

This instruction affects no registers in the microprocessor and no flags
other than the carry flag which is set.

SEC is a single-byte instruction and its addressing mode is Implied.
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3.0.2 CLC —Clear Carry Flag

This instruction initializes the carry flag to a 0. This operation should
normally precede an ADC loop. It is also useful when used with a ROL
instruction to clear a bit in memory.

This instruction affects no registers in the microprocessor and no flags
other than the carry flag which is reset.

CLC is a single-byte instruction and its addressing mode is Implied.

3.1  ZERO FLAG (Z)

This flag is automatically set by the microprocessor during any data
movement or calculation operation when the 8 bits of results of the
operation are 0. Therefore, the bit is on (“1”) when the results are 0, and
off “0”, when the results are not equal to 0. The feature of the machine
is similar to that of the PDP11 in the sense that operations which are
decrementing index registers or memory locations have a built-in test for
0 as a result of decrementing to the O condition. It is also possible to test
for O condition immediately following load and other logical operations,
as opposed to processors which have to do a test and branch instruction.
The Z flag is not directly settable or resettable by an instruction but is
affected by the following instructions: ADC, AND, ASL, BIT, CMP, CPY,
CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, RTI, SBC, TAX, TAY, TXA, TYA.

3.2 INTERRUPT DISABLE (1)

The interrupt disable is a flip-flop made use of by the programmer and
by the microprocessor to control the operations of the interrupt request
pin. A more detailed discussion of the effects of the interrupt disable are
given in the discussion under interrupt control. However, the purpose of
the interrupt disable is to disable the effects of the interrupt request pin.
The interrupt disable, |, is set by the microprocessor during reset and
interrupt commands. The | bit is reset by the CLI instruction or the PLP
instruction, or at a return from interrupt in which the interrupt disable was
reset prior to the interrupt. The interrupt flag may be set by the
programmer using a SEl instruction and is cleared by the programmer by
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using a CLI instruction. Instructions which affect the interrupt disable are
BRK, CLI, PLP, RTI and SEI.

3.2.1 SEl — Set Interrupt Disable

This instruction initializes the interrupt disable to a 1. It is used to mask
interrupt requests during system reset operations and during interrupt
commands.

It affects no registers in the microprocessor and no flags other than the
interrupt disable which is set.

SEl is a single-byte instruction and its addressing mode is Implied.

3.2.2 CLI = Clear Interrupt Disable

This instruction initializes the interrupt disable to a 0. This allows the
microprocessor to receive interrupts.

It affects no registers in the microprocessor and no flags other than the
interrupt disable which is cleared.

CLl is a single-byte instruction and its addressing mode is Implied.

3.3 DECIMAL MODE FLAG (D)

As discussed, the use of the decimal mode flag is to control whether or
not the adder operates as a straight binary adder for add and subtract
instructions or as a decimal adder for add and subtract instructions. The
SED instruction sets the flag and the CLD instruction resets it. The only
instructions which affect the decimal mode flag are CLD, PLP, RTI and
SED.

3.3.1 SED — Set Decimal Mode

This instruction sets the decimal mode flag D to a 1. This makes all
subsequent ADC and SBC instructions operate as a decimal arithmetic
operation.

SED affects no registers in the microprocessor and no flags other than the
decimal mode which is set to a 1.
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3.3.2 CLD - Clear Decimal Mode

This instruction sets the decimal mode flag to a O. This causes all
subsequent ADC and SBC instructions to operate as simple binary
operations.

CLD affects no registers in the microprocessor and no flags other than the
decimal mode flag which is set to a 0.

34 BREAK COMMAND (B)

The break command flag is set only by the microprocessor and is used to
determine during an interrupt service sequence whether or not the
interrupt was caused by BRK command or by a real interrupt. A more
detailed discussion of BRK is in the interrupt section. This bit should be
considered to have meaning only during an analysis of a normal interrupt
sequence. There are no instructions which can set or which reset this bit.

3.5 EXPANSION BIT

The next bit in the flag register is an unused bit. It is most likely that this
bit will appear to be on when one is analyzing the bit pattern in the
processor status register; however, no guarantee as to its state is made
as this bit will be used in expanded versions of the microprocessor.

3.6  OVERFLOW (V)

As discussed in the section on arithmetic operations, if one is to look at the
binary arithmetic operations as signed binary operations, there needs to
be some indication of the fact the result of the arithmetic operation has a
greater value than could be contained in the 7 bits of the result. This bit
is the overflow bit and during ADC and SBC instructions represents a
status of an overflow into the sign position. The user who is not using
signed arithmetic can totally ignore this flag during his programming;
however, this flag has the same meaning as the carry to the user who is
using signed binary numbers. It indicates that a sign correction routine
must be used if this bit is on after an add or subtract using signed numbers.
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In addition to its use to monitor the validity of the sign bit in ADC and SBC
instructions, the overflow flag in the MCS650X products is dramatically
changed from PDP11 and the MC6800. In those systems the overflow
flag was very carefully controlled so as to allow certain signed branches
for analysis of signed numbers. These branches have been deleted from
the MCS6500 series because of confusion and difficulty often associated
with using them, and so therefore, the overflow flag is applicable only to
the operation of ADC and SBC, and then only when using signed numbers.

However, in order to maximize the effectiveness of this testable flag the
BIT instruction which may be used to sample interface devices, allows the
overflow flag to reflect the condition of bit 6 in the sampled field. During
a BIT instruction the overflow flag is set equal to the content of the bit 6
on the data tested with BIT instruction. When used in this mode, the
overflow has nothing to do with signed arithmetic but is just another sense
bit for the microprocessor. Instructions which affect the V flag are ADC,
BIT, CLV, PLP, RTl and SBC. On certain versions of the microprocessor the
V bit will also be available for stimulus from the outside world.

3.6.1 CLV - Clear Overflow Flag

This instruction clears the overflow flag to a 0. This command is used in
conjunction with the set overflow pin which can change the state of the
overflow flag with an external signal.

CLV affects no registers in the microprocessor and no flags other than the
overflow flag which is set to a O.

3.6.2 Determination of Overflow

To briefly recap the concept of overflow detection, one must understand
that the machine signals an overflow based on the data entered to the
operation and the final result. Since, with signed arithmetic, the range of
numbers that can be represented is +127 to —128, the overflow flag will
never set when numbers of opposite sign are added, since their result will
never exceed that range. The machine deals with this by recognizing that
for any 2 positive numbers, the “bit 7” of each is a “0” and that for any
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arithmetic operation yielding a result less than or equal to +127, the
resultant “bit 7” must be a “0.” If it is a 1, the overflow flag is set.

Similarly, when two negative numbers are added, the “bit 7” of each is
a “1” and for any result yielding a value less than or equal to —128,
the resultant “bit” must be a “1.” If it is a O, the overflow flag is set.

Therefore, the machine recognizes by knowledge of the “bit 7” of each
of the numbers to be added what the resultant “bit 7” must be in a non-
overflow situation. If these conditions are not met, the overflow flag
goes set.

3.7  NEGATIVE FLAG (N)

As already discussed, one of the uses of the microprocessor is to perform
arithmetic operations on signed numbers. To allow the user to readily
sample the status of the sign bit (bit 7), the N flag is set equal to bit 7 of
the resulting value in all data movement and data arithmetic. This means,
for instance, after a signed add one can determine the sign of the result
by sampling the N flag directly rather than finding a way to isolate bit
7. Although signs were the primary purpose for which the N flag was
intended, its usefulness far exceeds that of strictly a sign bit.

Because of every operation including simple moves and add operations
the N bit is equal to the status of bit 7 as a result of the operation; its
primary use becomes that of an easily testable bit. Almost all single-bit
instructions, all interrupts and all 1/O status flags use bit 7 as a sense bit.
This allows the user to perform some type of memory access operation
such as Load A followed by immediate conditional branch based on the
status of bit 7 as reflected in the N flag. Like the Z bit, this flag is not
settable or controllable by the programmer and represents the status of
the last data movement operation. Instructions which affect the negative
flag are ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC,
INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, SBC, TAX, TAY, TSX,
TXA and TYA.
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3.8 FLAG SUMMARY

To summarize, the microprocessor treats a series of flags or status bits as
a single register called the “P” or “Program Status” register.

Some of these flags are controllable only by the programmer (such as
the D flag); others are controllable by both the user program and
microprocessor (such as the interrupt disable flag). Some of them are set
and reset by almost every processor operation, such as the N and Z flags.
Each of these flags has its own meaning to the programmer at a particular
point in time. When combined with the concept of conditional branches,
they represent a powerful test and jump capability not normally found in
a machine of this magnitude. Other than perhaps the carry flag which is
used as part of the arithmetic instructions, the flags by themselves have
relatively little meaning unless one has the ability to test them. For this
purpose there is a series of conditional branch instructions designed into
the machine.
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CHAPTER 4

TEST, BRANCH AND JUMP INSTRUCTIONS

4.0 CONCEPTS OF PROGRAM SEQUENCE

In all the discussions up until now, there has been little discussion about
how the microprocessor understands the instructions used to perform
various arithmetic and accumulator manipulations. However, it is
appropriate that the concept of a program and how the microprocessor
determines each instruction be developed. More registers are required
in the machine as shown in the figure below.

| DATA BUS |

g g 11 ¢ 8 g
A K| A PCL PCH p

Cr ¢

| INTERNAL ADL |

INTERNAL  ADH |

ABH

\ 4

N/

MEMORY

Partial Block Diagram of MCS650X Including Program
Counter and Internal Address Bus

FIGURE 4.1
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Although two 8 bit registers have been added, they are the only registers
in the machine that act as though they are one 16 bit register. They
implement a concept known as program count or program sequence and
subsequently their value will be referred to as PC or program count. In
certain operations it may be convenient to talk about how one affects the
program count low (PCL) which will be the lower 8 bit register or the
program count high (PCH) which will be the higher 8 bit register. The
reason for this register being 16 bits in length is that if it had only 8 bits
it would only be able to reference 256 locations. Since it is through the
address bus that one accesses memory, the program counter which
defines the addressable location, should be as wide a word as possible.

The accessing of a memory location is called “addressing”. It is the
selection of a particular eight-bit data word (byte) out of the 65,536
possibilities for memory data locations. This selection is transmitted to the
memory through the 16 address lines (ADH, ADL) of the microprocessor.

For a more detailed discussion of how an individual memory byte is
selected by the address lines, the reader is referred to Chapter 1 of the
Hardware Manual.

If the program counter was only 1 byte and if the bit pattern which allows
the microprocessor to choose which instruction it wants to act on next, such
as “LDA” as opposed to an “AND”, was contained in one byte of data
we could only have 256 program steps. Although the machine of this
length might make an interesting toy, it would have no real practical
value. Therefore, almost all of the competitive 8 bit microprocessors have
chosen to go to a double length program counter. Even though some of
the microprocessors of the MCS650X family do not have all of the output
address lines necessary to allow the user to address 65K bytes of
program (due to package pinout constraints), in all cases the program
counter is capable of addressing a full 65K by virtue of its 16 bit length.
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4.0.1 Use of Program Counter to Fetch an Instruction

The microprocessor contains an internal timing and state control counter.
This counter, along with a decode matrix, governs the operation of the
microprocessor on each clock cycle. When the state of the microprocessor
indicates that a new instruction is needed, the program counter (program
address pointer) is used to choose (address) the next memory location
and the value which the memory sends back is decoded in order to
determine what operation the MCS650X is going to perform next.

To use the program counter to perform this operation correctly, it must
always be addressing the operation the user wants to perform next. This
operation may be an instruction or may be data on which the instruction
will operate.

In the MCS650X family, the program counter is set with the value of the
address of an instruction. The microprocessor then puts the value of the
program counter onto the address bus, transferring the 8 bits of data at
that memory address into the instruction decode. The program counter
then automatically increments by one and the microprocessor fetches
further data for address operation necessary to complete the instruction.
In the simple example below,

Example 4.1:  Accessing Instructions with the P Counter Value

P Counter* Location Contents
0100%* LDA  *Program Counter
0101 ADC  **Hexadecimal
0102 STA Notation

one can see how the program counter is used to access the instruction
sequence load A, add with carry, and store the result. In this example,
the program counter would start out containing 0100. The microprocessor
would read location 0100 by using the program counter to access
memory and would then interpret and implement the LDA instruction as
previously described. The program counter will automatically increment
by one on each instruction fetch, stepping to 0101. After performing the
LDA, the microprocessor would fetch the next instruction addressing
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memory with the program counter. This would pick up the ADC instruction,
the add would then be performed, the program counter which has been
incremented to 0102 would be used to address the next instruction, STA.
The P counter incrementing once with each instruction is an oversimplified
view of what actually transpires within the microprocessor.

The MCS650X processors usually require more than one byte to correctly
interpret an instruction. The first byte of an instruction is called the OP
CODE and is coded to contain the basic operation such as LDA (load
accumulator with memory) and also the data necessary to allow the
microprocessor to interpret the address of the data on which the
operation will occur. In most cases, this address will appear in memory
right after the OP CODE byte: This allows the microprocessor to use the
program counter to access the address as well as the OP CODE.

The following example shows how the program counter picks up the
instruction and the address of data located at address 5155.

Example 4.2: Accessing Data Address With P Counter Value

P Counter Location Contents
0100 LDA
0101 55
0102 51
0103 Next Instruction

The OP CODE appears in Location Address 0100. The code for the 55
would appear next in Location Address 0101 and the 51 would appear
in Location Address 0102, and the OP CODE for the next instruction
appears in Location Address 0103. In this example, we see that the
program counter is used not only to pick up the operation code, LDA, but
is also used to pick up the address of the memory location from which the
LDA is going to obtain its data. In this case, the program counter
automatically is incremented three times to pick up the full instruction with

the microprocessor interpreting each of the individual fetches as the
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appropriate data. In other words, the first fetch is used to pick up the OP
CODE, LDA, the second fetch is used to pick up the low order address
byte of the data and the third fetch is used to pick up the high order
address byte of the data. This is the form in which many of the
microprocessor instructions will appear as it is the most simple form of
addressing in the machine and allows referencing to any memory
location.

Assuming that the microprocessor has the ability to start the program
counter at a known instruction, it should be fairly obvious that the program
counter would then continue to advance from that location up to the
maximum memory location, roll over to the least memory location and
continue incrementing through the memory, fetching instructions and
addresses as it went. This would give us an interesting sequential program
but one which lacked one tremendously powerful concept. The program
would have no ability to perform tests or implement various options
based on the results of those tests.

In the previous section, the concept of flags which are set as a result of
the microprocessor operations was developed.

To use these flags, the program should be able to test them and then
change the sequence of operations which are being performed
depending on the result of the test. The program counter is going to
continually put out an address, the microprocessor is going to fetch the
instruction stored at that address and perform operations based on that
instruction. In order to change a sequence of performed instructions by
the microprocessor, the programmer must change the value in the
program counter. Therefore, test instructions are incorporated which may
result in a change of program count sequence as a result of performing
one of the tests. The simplest way to change program sequence is to
substitute a new value into the program counter location. In the MCS650X
microprocessors the simplest way to change the program count sequence

is with a JMP instruction.
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4.0.2 JMP —Jump to New Location

In this instruction, the data from the memory location located in the
program sequence after the OP CODE is loaded into the low order byte
of the program counter (PCL) and the data from the next memory location
after that is loaded into the high order byte of the program counter

(PCH).
The symbolic notation for jump is (PC + 1)—PCL, (PC + 2)—>PCH.

As stated earlier, the “( )” means “contents of” a memory location. PC
indicates the contents of the program counter at the time the OP CODE is
fetched. Therefore (PC + 2)—>PCH reads, “the contents of the program
counter two locations beyond the OP CODE fetch location are transferred
to the new PC high order byte.”

The addressing modes are Absolute and Absolute Indirect.
The JMP instruction affects no flags and only PCL and PCH.

The JMP instruction allows use of the program counter to access the new
program counter value as illustrated by the following example:

Example 4.3:  Use of JMP Instruction (Absolute Addressing Mode)

Address Data Comments
0100 JMP Jump to Location 3625
0101 25 (New PCL byte)
0102 36 (New PCH byte)
3625 OP CODE Next Instruction

The program counter in the example starts out at location 100. The
microprocessor loads a jump instruction. The program counter
automatically increments to 101 where the microprocessor picks up and
temporarily stores the 25. The program counter automatically increments
to 102 where the microprocessor picks up the 36.

The 3625 is substituted into the program counter and is used to address
the next instruction. Therefore, the JMP instruction contains within its
address the new program counter location.

Although the jump allows the change of program sequence, it does so
without performing any test. So it is a jump instruction that is employed
when it is desired to change the program counter no matter what
conditions have occurred.
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Another JMP addressing Mode is the Indirect Addressing Mode.

Before this technique can be understood, the basis of indirect addressing
found in Chapter 6 must be reviewed. The JMP Indirect instruction is
detailed in Chapter 9, page 141.

4.1 BRANCHING

To allow for conditional program sequence change, there are a series of
branch instructions which test and perform optional changes of the
program counter based on the status of the flags. To perform a
conditional change of sequence, the microprocessor must interpret the
instruction, test the value of a flag, and then change the P counter if the
value agrees with the instruction. If the condition is not met, the program
counter continues to increment in its normal fashion. Figure 4.2 illustrates
how a conditional test might be used.

LOAD VALUE1

\ 4
ADD VALUE2

'

TEST
CARRY STATE
IS CARRY
SET (=1)
2

BRANCH TO NEW
PROGRAM COUNTER
LOCATION

YES

CONTINUE IN
PROGRAM SEQUENCE

Use of Conditional Test
FIGURE 4.2
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In this example, it is seen that generation of a carry from the add
operation will allow an out-of-sequence branch to a new location.

4.1.1 Basic Concept of Relative Addressing

If one considers that the instruction JMP required three bytes, one for OP
CODE, one for new program counter low (PCL) and one for new program
counter high (PCH) it is seen that jump on carry set would also require
three bytes. Because most programs for control require many continual
jumps or branches, the MCS650X uses “relative” addressing for all
conditional test instructions. To perform any branch, the program counter
must be changed. In relative addressing, however, we add the value in
the memory location following the OP CODE to the program counter. This
allows us to specify a new program counter location with only two bytes,
one for the OP CODE and one for the value to be added.

To illustrate this, in the following example, the branch on carry set (BCS)
illustration is followed by a value of 50. If the carry is set, the new
program location would be 108 + 50 = 158; in other words, it will take
the branch.

Example 4.4: lllustration of “Branch on Carry Set”
Address Data Comments

0100 LDA Load First Value

0101 ADL1 First Number, low byte

0102 ADHI1 First Number, high byte

0103 ADC Add Second Value

0104 ADL2 Second Number, low byte

0105 ADH2 Second Number, high byte

0106 BCS Test for Carry Set. If yes,
branch to 0158

0107 +50

0108 STA If not, store results of add

0109 ADL3 Result, low byte

010A ADH3 Result, high byte

0158 OP CODE New Instruction
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The 0108 represent the value of the program counter after reading the
offset value. The program counter automatically increments so it can
reference the next memory location on the next cycle. The add of the
offset is a signed binary add as discussed in the arithmetic section. A
positive branch is indicated by a 0 in bit 7 of the relative value, and a
minus branch is in two's complement form and is indicated by a 1 in bit 7.
The inherent capabilities of this type of notation system allow branch
conditionally forward 127 bytes from the next instruction and back 128
bytes from that instruction. All branches in the MCS650X series are
conditional relative branches and all have the form shown above. The
advantage of relative addressing is best shown in the following example:

Example 4.5: Sequencing Two Branch Instructions

Address Data Comments

0100 LDA Load First Value

0101 ADL1

0102 ADH1

0103 ADC Add Second Value

0104 ADL2

0105 ADH2

0106 BCS Test for Carry Set. If
yes, branch to 0158

0107 +50

0108 BMI Test for Minus Number.
If yes, branch to 0095

0109 =75

010A STA If not, Store

010B ADL3

010C ADH3

In this example, the previous single-branch example was modified to also
test the resulting number to see if it is negative. In sequencing two-branch
instructions, this loop is 2 bytes shorter by use of relative branches rather
than 3 byte branches.
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4.1.2 Branch Instructions

4.1.2.1 BMI = Branch on Result Minus

This instruction takes the conditional branch if the N bit is set.

BMI does not affect any of the flags or any other part of the machine
other than the program counter and then only if the N bit is on.

The mode of addressing for BMI is Relative.

4.1.2.2 BPL — Branch on Result Plus

This instruction is the complementary branch to branch on result minus. It is
a conditional branch which takes the branch when the N bit is reset (0).
BPL is used to test if the previous result bit 7 was off (0) and branch on
result minus is used to determine if the previous result was minus or bit 7
was on (1).

The instruction affects no flags or other registers other than the P counter
and only affects the P counter when the N bit is reset.

The addressing mode is Relative.

4.1.2.3 BCC — Branch on Carry Clear

This instruction tests the state of the carry bit and takes a conditional
branch if the carry bit is reset.

It affects no flags or registers other than the program counter and then
only if the C flag is not on.

The addressing mode is Relative.

4.1.2.4 BCS — Branch on Carry Set

This instruction takes the conditional branch if the carry flag is on.

BCS does not affect any of the flags or registers except for the program
counter and only then if the carry flag is on.

The addressing mode is Relative.
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4.1.2.5 BEQ — Branch on Result Zero

This instruction could also be called “Branch on Equal.”

It takes a conditional branch whenever the Z flag is on or the previous
result is equal to O.

BEQ does not affect any of the flags or registers other than the program
counter and only then when the Z flag is set.

The addressing mode is Relative.

4.1.2.6 BNE — Branch on Result Not Zero

This instruction could also be called “Branch on Not Equal.”

It tests the Z flag and takes the conditional branch if the Z flag is not on,
indicating that the previous result was not zero.

BNE does not affect any of the flags or registers other than the program
counter and only then if the Z flag is reset.

The addressing mode is Relative.

4.1.2.7 BVS — Branch on Overflow Set

This instruction tests the V flag and takes the conditional branch if V is on.

BVS does not affect any flags or registers other than the program counter
and only when the overflow flag is set.

The addressing mode is Relative.

4.1.2.8 BVC — Branch on Overflow Clear

This instruction tests the status of the V flag and takes the conditional
branch if the flag is not set.

BVC does not affect any of the flags and registers other than the
program counter and only when the overflow flag is reset.

The addressing mode is Relative.
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4.1.3 Branch Summary

To summarize, the MCS650X branches have two characteristics; each of
them tests the state of a flag and then either accesses the next instruction
in program sequence if the flag is not in the test state or adds the offset
value to the PC value at the OP CODE of the next instruction (PC + 1) to
allow the program to change operations. This allows the programmer the
full ability to make decisions. By writing a sequence of branch instructions,
any combination of conditions of the microprocessor may be determined
and new action taken as a result of the tests.

There are four branch conditions in the MCS6501-5 microprocessors.
These are branch on carry flag, branch of overflow flag, branch on N
flag, and branch on zero flag. Each of the branches has a branch on flag
set (1) or a branch on flag clear (0).

4.1.4 Solution to Branch Out of Range

The branch relative instruction is unlike the jump instruction which can reach
anywhere in memory, since branch relative is limited to +127 or —128
from the current program counter location. Although for many loops and
many tests this is sufficient range, longer programs will occasionally find
it necessary to conditionally branch to a location that is significantly
further away than the branch command will directly reach. This is one of
the uses of complementary branches. If a program should find it
necessary to branch to a location which was significantly further away
than 127, the following solution would facilitate the branch:
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Example 4.6: Use of JMP to Branch Out of Range

Address Data Comments

100 LDA Load First Value

101 ADL1

102 ADH1

103 ADC Add Second Value

104 ADL2

105 ADH2

106 BCC Branch, if no carry,
Ahead 3 (to Point 2)

107 +3

108 JMP If carry set, jump to
location specified by
ADH4, ADL4

109 ADL4

10A ADH4

Point 2 10B BMI Check for minus

10C Offset

10D STA

10E ADL3 If not Minus, Store
Result

10F ADH3

In this example, carry set is being checked. In order to accomplish this
when the branch command would have to reach outside of the 128 range,
the use of a complementary branch is required. Instead of doing the
“branch on carry set” to the location, the “branch on carry clear” is utilized
(a complementary instruction) which branches past the jump. If the
complementary branch is not taken, the jump is the “branch on carry set”
function.

This technique of branching past a jump with the complementary branch
is a universal solution to the branch out of range problem.

Another solution is to find a like branch to the same location that is within
range and although this involves two branches to transfer control, it does
save memory locations.

By use of the relative branch less bytes of code are used than if a
conditional jump had been used. However, in large programs, the branch
out of range occurs more frequently. If the user can determine that a
branch will be out of range by inspection, he should use the jump solution
at the time he is writing the code. Otherwise the various assemblers
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indicate an out of range branch which will require recoding to use the
jump solution.

NOTE: The jump solution causes 5 bytes of code to be substituted for 2
bytes of branch which in a symbolic assembly may force other
branches to go out of range. This might cause several
consecutive reassemblies but this technique will solve the
problem.
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4.2 TEST INSTRUCTIONS
Although most of the normal operations of the microprocessor involve
setting of flags, there are specific instructions which are designed only to

set flags for testing with the branch instruction.

4.2.1 CMP - Compare Memory and Accumulator

This instruction subtracts the contents of memory from the contents of the
accumulator.

Its symbolic notation is A — M.

The use of the CMP affects the following flags: Z flag is set on an equal
comparison, reset otherwise; the N flag is set or reset by the result bit 7,
the carry flag is set when the value in memory is less than or equal to the
accumulator, reset when it is greater than the accumulator. The
accumulator is not affected.

It is a “Group One” instruction and therefore has as its addressing modes:
Immediate; Zero Page; Zero Page,X; Absolute; Absolute, X; Absolute,Y;
(Indirect,X); (Indirect),Y.

The purpose of the compare instruction is to allow the user to compare a
value in memory to the accumulator without changing the value of the
accumulator. An example of where this becomes extremely important is
when one is receiving command instructions from an external device. In
this case, an input byte may have several values. Each value can cause
the program to perform a different operation. The only rapid way to
determine the value of the input data is to compare the memory with a
series of constants. It is fairly simple to perform “compare to constant”
operations. By use of the immediate addressing mode which will be
developed later, the following example compares an input to three
values and branches to different locations for each:
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Example 4.7: Using the CMP instruction

Data Comments

LDA Load Value

ADL Address Low

ADH Address High

CMP Compare COUNT 1 to Accumulator
COUNT 1

BEQ If Equal, take the branch to OFFSET 1
OFFSET 1

CMP Compare COUNT 2 to Accumulator
COUNT 2

BEQ If Equal, take the branch to OFFSET 2
OFFSET 2

CMP Compare COUNT 3 to Accumulator
COUNT 3

BEQ If Equal, take the branch to OFFSET 3
OFFSET 3

Next Inst. Otherwise, go to Next Instruction based on

default value (COUNT 4).

This example shows how to use the default option. A value was compared
against 3 values and if none were equal a fourth, or default value, is
assumed. This is a useful technique for code minimization.

The compare instruction is designed to allow a signed comparison
between 2 values assuming one makes appropriate use of the Z and N
and C flags. In order to give maximum flexibility to the instruction, the
instruction performs an effective subtract between the value in memory
and the value in the accumulator. The reason it is an effective subtract is
that subtraction allows the user to compare equal or less with one
instruction.

The results of a compare are:

N C YA \%
Accumulator < Memory Either Reset Reset Unchanged
Accumulator = Memory Reset Set Set Unchanged
Accumulator > Memory Either Set Reset Unchanged

So, to check if the accumulator is less than memory, the compare is
followed by a BCC; to check if equal to is followed by a BEQ; and to
check if greater it is followed by a BEQ followed by a BCS. Greater than
or equal is checked by BCS.
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4.2.2 Bit Testing

The comparison instruction is designed for cases when byte or multiple
bytes of values are being compared; however, in the analysis of logic
functions, it is very often necessary to determine the condition of an
individual bit. One of the ways to accomplish this is with the use of the
AND instruction as previously discussed. In other words, the user can load
a value into the accumulator and AND it with a field that contains a one
bit only in the corresponding bit position to the bit under test. By using a
Branch on Zero Flag after the AND, the status of the bit in memory is
testable by this technique. However, the use of this technique involves
destroying the accumulator value with the AND instruction. Therefore,
searching a table looking for a single bit in a given position would
necessitate the reloading of the test value (mask) after each AND
instruction.

In order to allow memory sampling without disturbing the accumulator,
the BIT instruction is used.

4.2.2.1 BIT — Test bits in Memory with Accumulator

This instruction performs an AND between a memory location and the
accumulator but does not store the result of the AND into the accumulator.

The symbolic notation is M A A.

The bit instruction affects the N flag with N being set to the value of bit
7 of the memory being tested, the V flag with V being set equal to bit 6
of the memory being tested and Z being set by the result of the AND
operation between the accumulator and the memory if the result is Zero,
Z is reset otherwise. It does not affect the accumulator.

The addressing modes are Zero Page and Absolute.
The BIT instruction actually combines two instructions from the PDP-11 and
MC6800, that of TST (Test Memory) and (BIT Test). This, like the compare

test, allows the examination of an individual bit without disturbing the
value in the accumulator and is illustrated by the example below:
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Example 4.8: Sample Program Using the BIT Test

Data Comments
LDA Load MASK into Accumulator

BIT Test First Memory Value for Mask Bit

BNE Branch if Set

BIT Test Secondary Memory Value for Mask Bit

BNE Branch if Set

The value “MASK” loaded into the accumulator in this example is actually
a descriptive title since, this byte is 8 bits, only one of which is a 1. Using
this byte in the AND operation inherent in the BIT test will effectively mask
out all bits in the memory location under test except that bit position
corresponding to the 1 residing in the accumulator. In Example 4.8, the
MASK byte is AND'ed to the data found in location ADH1, ADL1 and if
the bit under test is a 1, the branch will be taken; if not a 1, the second
memory location will be tested with the same mask, etc.

In addition to the non-destructive feature of the bit which allows us to
isolate an individual bit by use of the branch equal or branch not equal
test, two modifications to the PDP-11 version of that instruction have been
made in the MCS650X microprocessor. These are to allow a test of bit 7
and bit 6 of the field examined with the BIT test. This feature is
particularly useful in serving polled interrupts and particularly in dealing
with the MCS6520 (Peripheral Interface Device). This device has an
interrupt sense bit in bit 6 and bit 7 of the status words. It is a standard
of the M6800 bus that whenever possible, bit 7 reflects the interrupt
status of an |/O device. This means that under normal circumstances, an
analysis of the N flag after a load or BIT instruction should indicate the
status of the bit 7 on the 1/O device being sampled. To facilitate this test
using the Bit instruction, bit 7 from the memory being tested is set into the
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N flag irrespective of the value in the accumulator. This is different from
the bit instruction in the M6800 which requires that bit 7 also be set on
the accumulator to set N. The advantage to the user is that if he decides
to test bit 7 in the memory, it is done directly by sampling the N bit with
a Bit followed by branch minus or branch plus instruction. This means that
I/O sampling can be accomplished at any time during the operation of
instructions irrespective of the value preloaded in the accumulator.

Another feature of the BIT test is the setting of bit 6 into the V flag. As
indicated previously, the V flag is normally reserved for overflow into the
sign position during an add and subtract instruction. In other words, the V
flag is not disturbed by normal instructions. When the BIT instruction is
used, it is assumed that the user is trying to examine the memory that he
is testing with the BIT instruction. In order to receive maximum value from
a BIT instruction, bit 6 from the memory being tested 1s set into the V
flag. In the case of a normal memory operation, this just means that the
user should organize his memory such that both of his flags to be tested
are in either bit 6 or bit 7, in which case an appropriate mask does not
have to be loaded into the accumulator prior to implementing the BIT
instruction. In the case of the MCS6520, the BIT instruction can be used
for sampling interrupt, irrespective of the mask. This allows the
programmer to totally interrogate both bit 6 and bit 7 of the MCS6520
without disturbing the accumulator. In the case of the concurrent interrupts,
i.e., bit 6 and bit 7 both on, the fact that the V flag is automatically set
by the BIT instruction allows the user to postpone testing for the “6th bit
on” until after he has totally handled the interrupt “for bit 7 on” unless he
performs an arithmetic operation subsequent to the BIT operation.
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CHAPTER 5

NON-INDEXING ADDRESSING TECHNIQUES

5.0 ADDRESSING TECHNIQUES

The addressing modes of the MCS6500 family can be grouped into two
major categories: Indexed and Non-Indexed Addressing. This section
deals with the Non-Indexed mode of addressing. Before detailing the
various modes available to the user, several concepts will be reviewed.
The first of these is the concept of memory field, address bus and data
bus. Then a brief introduction to two non-indexed addressing modes and
timing will be made with the intent of preparing the reader for a
discussion of program sequence and the internal activity of the
microprocessor during execution of an instruction. This will be followed by
a review of how one treats memory and the assorted allocation of
memory space to the elements of RAM, ROM and |/O.

Subsequent to reading this section the user should have an understanding
of the following fundamentals:

a) Memory Field

b) Address Bus

c) Data Bus

d) Cycle Timing

e) Program Sequence
f) Pipelining

With these tools in hand, the reader will be better prepared to readily
comprehend the detailed definitions of the non-indexed addressing
modes.

As discussed in Section 1.1 the MCS650X microprocessor family is
organized around a 16-bit address function. All locations are accessed
by a 16-bit word, even though in the case of the MCS6503, the
MCS6504, and the MCS6505, only 11 or 12 bits are actually utilized.
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Sixteen bits of address allow access to 65,536 memory locations, each
of which, in the MCS650X family, consists of 8 bits of data. Figure 5.1
displays the total memory field and incorporates the concept of address
bus and data bus. The memory address can be regarded as 256 pages
(each page defined by the high order byte) of 256 memory locations
(bytes) per page. It will be seen in the detailed discussion of addressing
that the lowest order page, page zero, has special significance in the
minimization of program code and execution time.

Much of the uniqueness of the MCS6500 product family has to do with
how the 16-bit address is created. The simplest way to create a 16-bit
address is for the programmer to indicate to the microprocessor the 16
bits necessary to access a particular operand on which the microprocessor
is expected to operate. An instruction consists of 1, 2, or 3 bytes. It always
takes 1 byte to specify the operation which is to be performed (OP
CODE). This OP CODE is then followed by O, 1, or 2 bytes of address
depending on the specific operation involved. In the case of the simple
instructions such as transfer accumulator to X, operations are performed
internally and, therefore, no additional bytes are necessary. This
instruction mode is known as “Implied” in the sense that the instruction
contains both the OP CODE and the source and destination for the
operation. This is the simplest form of addressing and applies to only a
limited number of the instructions available in the MCS6500 family.
Another form of addressing, absolute addressing, is the case when the
programmer specifies directly to the microprocessor the address he wants
the microprocessor to use in fetching the memory value on which the
operation will occur. This form is illustrated by the example below.

Example 5.1:  Using absolute addressing
Clock Cycle Address Bus Data Bus
1 0100 LDA, Absolute
2 0101 ADL
3 0102 ADH
4 ADH, ADL DATA

In this example, memory location 0100 contains the OP CODE “LDA
Absolute.” The next location, 0101, contains ADL which will be defined as

51



the “low order byte of the address,” hence address low (ADL). Location
0102 contains ADH — the “high order byte of the address,” hence address
high, (ADH). At the next clock cycle, the 16 bits composed of ADH and
ADL are put on the address bus with the location defined by ADH, ADL
containing the data to be loaded into the accumulator. The effective
address of the data is best described in Figure 5.1, where the 16-bit
address (ABOO through AB15) is composed of ADH and ADL.

This is the normal form for an absolute memory address. The first byte of
the instruction which is picked up by the program counter is the operation
code. This is interpreted by the microprocessor as “Load A — Absolute.”
At the same time that this Load A is being interpreted by the
microprocessor, the microprocessor accesses the next memory location by
putting the program counter content, which was incremented as the OP
CODE was fetched, on the address bus.

5.1 CONCEPTS OF PIPELINING AND PROGRAM SEQUENCE

The overlap of fetching the next memory location while interpreting the
current data from memory minimizes the operation time of a normal 2 or
3-byte instruction and is referred to as pipelining. It is this feature that
allows a 2-byte instruction to only take 2 clock times and a 3-byte
instruction to be interpreted in 3 clock cycles.

In the MCS650X microprocessors, a clock cycle is defined as 1 complete
operation of each of the 2 phase clocks. Figure 5.2 is a sketch of the
address and data bus timing as it relates to the system clocks.

The major point to be noted is that every clock cycle in the MCS650X
microprocessor is a memory cycle in which memory is either read or
written. Simultaneously with the read or write of memory, an internal
operation of the microprocessor is also occurring.
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The following example will let us analyze this effect:

Example 5.2: Demonstration of “Pipelining” effect

Clock
Cycles External Operation Address Data Internal Operation
1 Fetch OP CODE 100 ADC Increment P-counter to
101
2 Fetch first-address 101 ADL Increment P-counter to
half from memory 102, interpret ADC
instruction
3 Fetch second-address 102 ADH Increment P-counter to
half from memory 103, hold ADL
4 Fetch operand from ADH, DATA Load DATA
memory ADL
5 Fetch next OP CODE 103 STA  Increment P-counter to
from memory 104, perform ADC
operation
A+M+C
[} Fetch address from 104 ADL Increment P-counter to
memory 105, result of add —

accumulator, interpret
STA instruction

The above example shows the operation of an ADC, add with carry

instruction, using absolute addressing. In the first cycle, the OP CODE is
fetched from memory addressed by the P-counter. To implement the look-
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ahead or pipeline in cycle two, the fetch of ADL address low is done
simultaneously with the interpretation of the ADC absolute instruction. By
the end of cycle 2, the microprocessor knows that it should access the next
memory location for the address high as a result of interpretation of the
absolute addressing mode.

The address low (ADL) is stored in the ALU while the address high (ADH)
is being fetched in cycle 3.

On the fourth cycle, no internal operation is necessary while the
microprocessor is putting the calculated value onto the address bus.
However, during this cycle, the operand is loaded into the microprocessor.

The 4 cycles have all been involved with memory access for the ADC,
absolute instruction. The first to fetch the instruction, the second to fetch
the address low, the third to fetch the address high and the fourth to use
the calculated address to fetch the operand. Because that completes the
memory operations for this instruction, during the fifth cycle the
microprocessor starts to fetch the next instruction from memory while it is
completing the add operation from the first instruction. During the sixth
cycle, the microprocessor is interpreting the new instruction fetched during
cycle 5 while transferring the result of the add operation to the
accumulator. This means that even though it really takes 6 cycles for the
microprocessor to do the ADC instruction, the programmer only need
concern himself with the first 4 cycles as the next 2 are overlapped as
shown.

All instructions take at least 2 cycles; one to fetch the OP CODE and 1 to
interpret the OP CODE and, with few exceptions, the number of cycles
that an instruction takes is equal to the number of times that memory must
be addressed.

The details of how each addressing mode is overlapped are described

in the individual sections and for specific details of each cycle in various
operations, the user is referred to the Hardware Manual, Appendix A.
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5.2 MEMORY UTILIZATION

As indicated, the 16-bit address allows the user to access greater than
65,000 separate locations. Most of the locations which will be accessed
in the course of a control problem will be in program or P-counter
referenced locations. A typical program will probably range from 1000
to 8000 bytes and will normally be implemented in fixed ROM or non-
volatile alterable ROM.

A second type of memory will be the read-write memory in which the user
keeps data such as working values, input and output data. Depending on
the type of problem being addressed, this RAM usually ranges from 32
bytes to 8000 bytes, although most applications will be under 2000
bytes of RAM.

It would seem there is significant address space not used in most
applications. To get the maximum benefit of the addressing space, 2
concepts are implemented in the MCS6500 family. These are the use of
data addressing as 1/O control and distributed address connections for
minimum control lines. The latter concept utilizes the address bus, which is
basic too and therefore pervasive in any microcomputer system, as a
controlling network whenever possible. An example of this is the use of
the address bus in selecting devices to interface with the microprocessor.

5.2.1 1/O Control

The advantages of accessing |/O as memory are 1) the use of distributed
address space allows for simple 1/O control lines and 2) all of the power
of the instructions is applied to |/O operations. This has the advantage
of minimizing |/O hardware and allows the programmer to be innovative
in the application of 1/O devices in solving his problem.

MCS6500 product family 1/O devices contain 8-bit registers which are
addressed by the microprocessor as though they were a memory byte. In
the simplest case, the 8-bit register being read contains a 1 and 0's
pattern which corresponds to the TTL voltage level applied to 8 input pins
to the 1/O device.
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If the register was a flip-flop register driving 8 output pins with TTL levels,
the storing of 8 bits of data with a STA instruction into that |/O register
would, in effect, be programming the flip-flop to a specific desired state.
Thus, one can use the instructions with the 1/O just as any other memory
location.

5.2.2 Memory Allocation

Figure 5.1 displays the relationship between memory, address bus and
data bus while referencing the address values in hexadecimal notation.
The previous section has dealt with utilization of memory address space
for not only ROM and RAM but for I/O as well. At this time, the concept
of allocation of the memory field of Figure 5.1 to the elements of ROM,
RAM and 1/O will be considered. The allocation below satisfies most
applications requirements and represents an optimum allocation for
minimization of programming code and speed.

Hexadecimal Address Suggested Allocation of Memory
0000 - 3FFF RAM
4000 — 7FFF /O
8000 — FFFF ROM

It should be noted that the 3 memory blocks address definitions which,
while not mandatory or required for proper system operation, do
represent a logical assignment of space. The justification for this
particular allocation will be presented in Section 9.12. In the meantime,
the reader should retain the concept of the various memory blocks
allocated to RAM, I/O and ROM as they are useful in the following
discussion. With an understanding of pipelining and the concept of
memory allocation, the next subject must be: in what manner can data be
accessed from the memory field?

53 IMPLIED ADDRESSING

Implied addressing is a single-byte instruction.

The byte contains the OP CODE which stipulates an operation internal to
the microprocessor. Instructions utilizing this type of addressing include

operations which clear and set bits in the P (Processor Status) register,
incrementing and decrementing internal registers and transferring
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contents of one internal register to another internal register. Operations
of this form take 2 clock cycles to execute. Use first cycle is the OP CODE
fetch and during this fetch, the program counter increments.

In the second cycle, the incremented P-counter is now the address of the
next byte of the instruction. However, since the OP CODE totally defines
the operation, the second memory fetch is worthless and any P-counter
increment in the second cycle is suppressed. During the second cycle, the
OP CODE is decoded with recognition of its single byte operation.

In the third cycle, the microprocessor repeats the same address to fetch
the next OP CODE. This is the second time the memory address is fetched;
once as the second byte of the first instruction and second, as the correct
OP CODE address for the next instruction.

A symbolic representation of a 2-cycle instruction is given below. “PC”
means “Program Counter.”

Example 5.3: lllustration of implied addressing
Clock
Cycle  Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC + 1 PC + 1 New Ignore New
OP CODE OP CODE;
Decode Old
OP CODE
3 PC+ 1 PC + 2 New Fetch New
OP CODE OP CODE;
Execute Old
OP CODE

Instructions which use implied addressing and require only 2 cycles include
CLC, CLD, Cll, CLV, DEX, DEY, INX, INY, NOP, SEC, SED, SEl, TAX, TAY,
TSX, TXA, TXS, TYA.

Instructions utilizing implied addressing and which require more than 2
cycles are stack operations which include BRK, PHA, PHP, PLA, PLP, RTI,
RTS.

58



54 IMMEDIATE ADDRESSING

Immediate addressing is a 2-byte instruction.

The first byte contains the OP CODE specifying the operation and
address mode. The second byte contains a constant value known to the
programmer. It is often necessary to compare load and/or test against
certain known values. Rather than requiring the user to define and load
constants into some auxiliary RAC, the microprocessor allows the user to
specify values which are known to him by the immediate addressing
mode.

Example 5.4: lllustration of immediate addressing
Clock
Cycle  Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC+1 PC+ 2 DATA Fetch DATA,
Decode OP CODE
3 PC+ 2 PC+ 3 New Fetch New
OP CODE OP CODE;
Execute Old
OP CODE

Immediate addressing is the simplest form of constant manipulation
available to the programmer. It requires a minimum execution time in the
sense that 1 cycle is used in loading the OP CODE and as this CODE is
being interpreted, the constant is being fetched.

Instructions utilizing immediate addressing are ADC, AND, CMP, CPX,
CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

55 ABSOLUTE ADDRESSING

Absolute addressing is a 3-byte instruction.

The first byte contains the OP CODE for specifying the operation and
address mode. The second byte contains the low order byte of the
effective address (that address which contains the data), while the third
byte contains the high order byte of the effective address. Thus the
programmer specifies the full 16-bit address and, since any memory
location can be specified, this is considered the most normal mode for
addressing. Other modes may be considered special subsets of this 16-
bit addressing mode.

59



Example 5.5: |lllustration of absolute addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL,
Decode OP CODE
3 PC + 2 PC+ 3 ADH Fetch ADH
Hold ADL
4 ADH, ADL PC+ 3 DATA Fetch DATA
5 PC+ 3 PC + 4 New Fetch New
OP CODE OP CODE,
Execute Old
OP CODE

The basic operation of the microprocessor in an Absolute address mode
is to read the OP CODE in the first cycle while finishing the previous
operation. In the second cycle, the microprocessor automatically reads
the first byte after the OP CODE (in this case the address low) while
interpreting the operation code. At the end of this cycle, the
microprocessor knows that it needs a second byte for program sequence;
therefore, 1 more byte will be accessed using the program counter while
temporarily storing the address low. This occurs during the third cycle. In
the fourth cycle, the operation is one of taking the address low and
address high that were read during cycles 2 and 3 to address the
operand. For example, in load A, the effective address is used to fetch
from memory the data which is going to be loaded in the accumulator. In
the case of storing, data is transferred from the accumulator to the
addressed memory.

As was illustrated in the review of pipelining, depending on the instruction,
it is possible for the microprocessor to start the next instruction fetch cycle
after the effective address operation and independent of how many
more internal cycles it may take to complete the OP CODE. The only
exception to this is the case of “Jump Absolute” in which the address low
and address high that are fetched in cycle 2 and cycle 3 are used as the
16-bit address for the next OP CODE. The jump absolute therefore only
requires 3 cycles. In all other cases, absolute addressing takes 4 cycles,
3 to fetch the full instruction including the effective address, the fourth to
perform the memory transfer called for in the instruction.
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Absolute addressing always takes 3 bytes of program memory; 1 for the
OP CODE, 1 for the address low, 1 for the address high, plus 1 byte of
data memory (such as RAM) that is pointed to by the effective address.

Instructions which have absolute addressing capability include ADC, AND,
ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR,
ORA, ROL, SEC, STA, STX, STY.

5.6 ZERO PAGE ADDRESSING

Zero page addressing is a 2-byte instruction. The first byte contains the
OP CODE, while the second byte contains the effective address in page
zero of memory.

As seen in absolute addressing, the ability to address anywhere in the
65K memory space costs 3 bytes of program space, plus a minimum of 4
cycles to perform address operations. In order to allow the user a
shortening of both memory space and execution time, particularly when
dealing with working registers and intermediate values, the MCS650X
microprocessor family has a special addressing mode that assumes
automatically the effective address high (ADH) to be in the lowest page
of memory. In order to understand the page concept one should think of
each of the various memory addresses as comprising a consecutive block
of 256 locations which have an independent high order address
associated with that block. Each block is called a page. Other than for
zero page and for calculating indexed addresses which will be covered
in the following sections, the microprocessor pays little attention to the
page concept.

The microprocessor assumes that the high order byte of the effective
address for instructions which contain OP CODES which indicate the zero
page addressing option is all 0's (ADH = 00, hexadecimal). This allows
the following sequence to occur.
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Example 5.6: |lllustration of zero page addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL,
Decode OP CODE
00, ADL PC + 2 DATA Fetch DATA
4 PC + 2 PC+ 3 New Fetch New
OP CODE OP CODE,
Execute Old
OP CODE

On the first cycle, the microprocessor puts out the program counter, reads
the OP CODE and increments the program counter. On the second cycle,
the microprocessor puts out the program counter, reads the effective
address low, interprets the OP CODE and increments the program
counter. So far, the operations are identical to those described in the
absolute addressing mode. However, by the end of the second cycle, the
microprocessor has decoded the fact that this is a zero page operation
and on the next cycle, it outputs address 00, as the effective address
high, along with the address low that it just fetched and then either reads
or writes memory at that location, depending on the OP CODE.

The advantage of zero page addressing is that it takes only 2 bytes, 1
for the OP CODE and 1 for the effective address low; and only 3 cycles,
1 to fetch the OP CODE, 1 to fetch the address low, and 1 to fetch the
data, as opposed to absolute addressing which takes 3 bytes and 4
cycles.

In order to make most effective utilization of this concept, the user should
organize his memory so that he is keeping his most frequently accessed
RAM values in the memory locations between O and 255. If one organizes
the zero page of memory properly, including moving data into these
locations for longer loops, significant shortening of program code and
execution time can be obtained.

The concept of zero page is so important that the various cross assemblers
have error notations which indicate when improper use of this space is
made. If one's coding is organized according to the guidelines shown in
Section 5.2.2, one normally will find working storage located in values
from O to 255. This is an important aspect of the discipline known as
“memory management.”
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Once the pattern of coding for the MCS650X, which considers working
storage or registers in the zero page, becomes a habit, one finds that in
most control applications, all of the working registers will take advantage
of this programming and the associated time reduction without any
special effort on the user’s part.

Instructions which allow zero page addressing include ADC, AND, ASL,
BIT, CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, ROL, SBC,
STA, STX, STY.

57 RELATIVE ADDRESSING

As discussed in Section 4.1, all of the branch operations in the
microprocessor use the concept of relative addressing. In example 5.7, it
is seen that for the case of the straightforward branch in which the branch
is not taken, on the first program count cycle, the microprocessor puts out
program counter as an address, fetches the OP CODE and finishes the
previous operation. During the second cycle, the program counter is put
on the address bus, picking up the relative offset. Internally, the
microprocessor is decoding the OP CODE to determine that it is a branch
instruction.

Example 5.7: lllustration of relative addressing branch not taken
External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous Operation,
OP CODE Increment Program
Counter to 0101
2 0101 Offset Fetch Interpret Instruction,
Offset Increment Program

Counter to 0102

3 0102 Next Fetch Next Check Flags, Increment
OP CODE OP CODE Program Counter to
0103

This is only the second cycle of an internal operation; therefore, the
microprocessor may be storing a computed value from the previous
instruction at the same time it is finishing interpreting the present
instruction. It is while doing the store operation that the flags in the
machine get physically set; therefore, the microprocessor allows the
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program counter to go 1 more cycle to allow itself time to determine the
value of the flags. For example, if the previous instruction is ADC, the
flags will not get set until the cycle in which the offset value is fetched.

During the third cycle, the microprocessor puts the incremented PC onto
the address bus, fetches the next OP CODE and checks the flag in order
to decide whether or not the program counter value that is going out is
correct and that the branch is not going to be taken. Therefore, an
additional type of pipeline, in this case fetching the next OP CODE in a
branch sequence, accomplishes the implementation of a branch relative
with no branch being taken. This requires 2 cycles. One cycle fetches the
branch OP CODE and 1 cycle fetches the next operation, the relative
offset. The second fetch is effectively ignored by virtue of the fact that
the branch is not taken, so the program counter location has already been
incremented and the next OP CODE has already been fetched by the
microprocessor.

If in the above example it is assumed that the flag is set such that the
branch is taken and the relative offset is +50, the microprocessor takes
a third cycle to perform the branch operation.

Example 5.8: |lllustration of relative addressing branch positive taken,
no crossing of page boundaries

External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous Operation,
OP CODE Increment Program
Counter to 0101
2 0101 +50 Fetch Interpret Instruction,
Offset Increment Program
Counter to 0102
3 0102 Next Fetch Next Check Flags, Add
OP CODE OP CODE Relative to PCL, Increment
Program Counter to
0103
4 0152 Next Fetch Next Transfer Results to

OP CODE OP CODE PCL, Increment Program
Counter to 0153

In Example 5.8, on the first cycle, a branch OP CODE is fetched while the
previous operation is finished. On the second cycle, the offset is fetched
while the branch instruction is being interpreted. On the third cycle, the
microprocessor uses the adder to add the program count low to the offset
and also checks the flags. Because the program count for the next OP

64



CODE in program sequence is already in the program counter and is
being incremented, the microprocessor can allow the incrementation
process to continue. If the value for the next instruction is indicated
because the flag is not set, then the microprocessor loads the next OP
CODE and the add of the program counter low to the offset value, is
ignored as it was in the previous example.

If during the third cycle the flag is found to be the correct value for a
branch, the OP CODE that has been fetched during this cycle is ignored.
The microprocessor then updates the program counter with the results
from the add operation, puts that value out on the address bus which
fetches a new OP CODE.

This gives the effect of a 3-cycle branch. Thus it can be seen that in a
case where the branch is not taken, the microprocessor has an effective
2-cycle branch, i.e., 2 memory references. In the case when the branch is
taken, the branch takes 3 cycles as long as the relative value does not
force an update to the program counter high. In other words, 3 cycles are
required if the page boundary is not crossed (recall the discussion of the
“page” concept in Section 5.0). If in the above example the branch was
back from address 0102 fifty locations, as opposed to +50 locations, the
following result would occur:

Example 5.9: lllustration of relative addressing — branch negative
taken, crossing of page boundary

External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous
OP CODE Instruction
2 0101 =50 Fetch Interpret Instruction
Offset
3 0102 Next Fetch Next Check Flags, Add
OP CODE OP CODE Relative to PCL.
4 01B2 Discarded Fetch Discarded Store Adder in PCL and
DATA DATA Subtract 1 from PCH
5 00B2 Next Fetch Next Put Out New PCH and
OP CODE OP CODE Increment PC to OOB3
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In this example, the adder is used to perform the arithmetic operation,
and the adder can do only the 8 bits of addition at a time. The minus
branch crosses back over the page boundary, therefore an intermediate
result is developed of 01B2 which has no intrinsic value because of the
borrow which now has to be reflected into the program counter high.
Since this example displays both a negative offset and the crossing of a
page boundary, additional explanation is in order.

The value to which the offset will he added is 0102 (hexadecimal). The
offset itself is =50 (hexadecimal).

Subtract low order byte:

024gx = 0000 0010
S04ex = 0101 0000
Take two’s compliment of 50:
50 = 1010 1111
Add 1 1
=50 = 1011 0000
Add 2 0000 0010
=50 1011 0000
Carry :@ 1011 0010
B 2

Up to this point, the PCH has not been affected; therefore the value on
the address bus is 01B2.

The Carry = 0, indicating a borrow.

Subtract high order byte:

Olyex = 0000 0001
O0hgx = 0000 0000
Take two’s compliment of 00:
O0ex = 1111 1111
Add Carry = 0]
Add 01 0000 0001
—-00 1111 1111
Carry =[1] 0000 0000
0 0

The presence of the Carry indicates no borrow, hence a positive result.
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At this time, after the arithmetic operation on both bytes of the P.C,, the
address bus will be: 00B2.

The microprocessor does put out on the address line the intermediate
results (01B2), thereby reading a location within the page it was currently
working in, the value of which is ignored. It then subtracts 1, or if this was
a branch forward to the next page, the microprocessor would add 1 to
program counter high in this fourth cycle. In the fifth cycle, the
microprocessor will recognize that it has the correct new program counter
high and program counter low and is able to start a new instruction
operation, thereby giving an effective length to the branch operation
when a page crossing is encountered of 4 cycles.

It should be noted that all of the above operations are automatic; once
a branch instruction is encountered, the following relative value is
calculated and put into the memory location after the branch instruction.

We can see, however, that it is possible to control the execution time of
a branch. This is important for counting or estimating times of operations.
For counting purposes, the following applies:

If a branch is normally not taken, assume 2 cycles for the
branch.

If the branch is normally taken but it is not across the page
boundary, assume 3 cycles for the branch.

If the branch is over a page boundary, then assume 4 cycles for
the branch.

In loops which are repeated many times, one can assume some type of
statistical factor between 3 and 2, or 4 and 2, depending on the
probability of taking the branch versus not taking it.

In order to indicate to the programmer when the 4-cycle branch is taken
as opposed to the 3-cycle branch, the various assemblers flag all branch
operations which cross page boundaries with a warning message and if
timing is important, the user can perhaps relocate his program in such a
way that the branch does not cross page boundary.

It should be re-emphasized that other than for timing purposes, page
boundary crossings can be ignored by the programmer.

To summarize, the relative addressing always takes 2 bytes. 1 for the
OP CODE and 1 for the offset.
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The execution time is as follows:

Branch with Not Taking the Branch — 2cycles
Branch When the Branch is Taken but 3 cvcles
No Page Crossing 4
Branch When the Branch is Taken with

4 cycles

a Page Crossing

Only branch instructions have relative addressing. The branch instructions
are: BCC, BEQ, BIT, BMI, BNE, BPL, BSC, BVC, BVS. For a more detailed
explanation of relative offset calculations the reader is referred to
Appendix H.
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CHAPTER 6

INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

6.0 GENERAL CONCEPT OF INDEXING

In previous sections techniques for using the program counter to address
memory locations after the operation code to develop the address for a
particular operation have been discussed. Other than cases when the
programmer directly changes the program memory, it can be considered
that the addressing modes discussed up until now are fixed or directed
addresses and each has the relative merits discussed under each
individual section. However, a more powerful concept of addressing is
that of computed addressing. There are basically two types of computed
addressing; indexed addressing and indirect addressing.

Indexed addressing uses an address which is computed by means of
modifying the address data accessed by the program counter with an
internal register called an index register.

Indirect addressing uses a computed and stored address which is

accessed by an indirect pointer in the programming sequence.

In the MCS650X product family, both of these modes are used and
combinations of them are available.

Before undertaking the more difficult concepts of indirect addressing the
concept of indexed instructions will be developed.
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In order to move five bytes of memory from an address contained in
FIELD 1 to another set of addresses, starting with FIELD 2, the following
program could be written:

Example 6.1: Moving Five Bytes of Data with Straight Line Code

LABEL INSTRUCTION OPERAND COMMENTS

START Ié?ﬁ: E:Etg ; :> Move First Value
Ié?ﬁ: E:Etg ; I : :> Move Second Value
Ié?ﬁ: E:Etg 12 I g :> Move Third Value
Ié?ﬁ E:E::B ]2 i g :> Move Fourth Value
Ié?ﬁ: E:Etg ; i j :> Move Fifth Value

In this example, data is fetched from the first memory location in FIELD 1,
as addressed by the next one or two bytes in program memory, stored
temporarily in A and then written into the first memory location in FIELD
2, also addressed by the next one or two bytes in program memory. This
sequence is repeated, with only the memory addresses changing, until all
the data has been transferred. This type of programming is called
straight line programming because each repetitive operation is a
separate group of instructions listed in sequence or straight line form in
program memory. This is necessary even though the instruction OP CODES
are identical for each memory transfer operation because the specific
memory addresses are different and require a different code to be
written into the program memory for each transfer.

It takes a total of 10 instructions to accomplish the move when it is
implemented this way. It should be noted that it is not indicated whether
or not FIELD 1 and FIELD 2 are Zero Page addresses or Absolute
addresses.

If they were Zero Page addresses, the total number of bytes consumed
in solving the problem would be two bytes for each instruction and
thereby requiring 20 bytes of memory; it both FIELD 1 and FIELD 2 were
Absolute memory locations, each instruction would take 3 bytes and this
program would require 30 bytes of program storage.
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The Zero Page program would execute in three cycles per instruction or
30 cycles and the Absolute location version would execute in four cycles
per instruction or 40 cycles.

A new concept has been introduced in this example, that of symbolic
notation rather than actual locations for the instructions.

The form that this short program is written in uses symbolic addressing in
which the address of the beginning of the program has a name START.
Symbolic representations of addresses such as “START” are referred to
as labels. The addresses in the two address field used in this example
have also been given names, the first address of the first field is called
FIELD 1; the first address of the second field is called FIELD 2. Each
additional address in the fields has been given a number which is
referenced to the first number; for example, the third byte in FIELD 1 is
FIELD 1 + 2. All of these concepts are implemented to simplify the ease
of writing a program because the user does not have to worry about the
locations of FIELD 1 and FIELD 2 until after analyzing the memory needs
of the whole program. Symbolic notation also results in a more readable
program.

Translation from symbolic form instructions and addresses into actual
numerical OP CODES and addresses is done by a program called a
symbolic assembler. Several different versions of symbolic assemblers
and cross assemblers are available for the MCS650X product family.
Symbolic notation will be used throughout the remainder of this text
because of its ease of understanding and because individual byte
addresses are unnecessary although for an explanation of a particular
mode, the byte representation may be used.

In this example, only direct addresses were used. A program to reduce
the number of bytes required to move the five values follows:
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\/

Move FIELD 1 to FIELD 2

v

Add 1 to FIELD 1 Address

\

Add 1 to FIELD 2 Address

Is FIELD 2 Address = End of FIELD 2

No 2

l Yes

Done

Flow Chart — Moving Five Bytes of Data with Loop
FIGURE 6.1

Example 6.2 is a program listing that corresponds to the flow chart:

Example 6.2: Moving Five Bytes of Data with Loop

LABEL INSTRUCTION OPERAND COMMENTS
INITIALIZE CLC
START LDA FIELD 1
OTHER STA FIELD 2 :| Move Loop
LDA START + 1 —_—
ADC #1
STA START + 1 Modify Move Values
LDA OTHER + 1
ADC #1
STA OTHER + 1 E—
CMP HFIELD 2 + 5 ——— Check for End
BNE START
NOTE: For ease of reading, labels have been written in the form

“FIELD 1”. This is incorrect format for use in the various symbolic
assemblers. "FIELD 1" must be written “FIELD1” when coding for
assembler formats.
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Assuming Zero Page, direct addressing, Example 6.3 is written below with
one byte per line just as it would appear in program memory. This will
provide a more detailed description of Example 6.2.

Example 6.3: Coded Detail of Moving Fields with Loop

LABEL CODE NAMES COMMENTS
CLC Clear Carry

START LDA (FIELD 1) —» A
FIELD 1

OTHER STA A — (FIELD 2)
FIELD 2
LDA From Address —» A
START + 1
ADC A+1—>A
1
STA A —» From Address
START + 1
LDA To Address —» A
OTHER + 1
ADC A+1—>A
1
STA A + To Address
OTHER + 1
CMP A — ORIGINAL FIELD 2 + 5
ORIGINAL FIELD 2 + 5
BNE If not, loop to START
START

In this example, the program is modifying the addresses of one load
instruction and one store instruction rather than writing ten instructions to
move five bytes of data and fifty instructions to move twenty-five bytes
of data.

The address of the Load A instruction is located in memory at START + 1
and the Store instruction at OTHER + 1. In order to perform this operation,
the address must be modified once for each move operation until all of
the data is moved.

Checking for the end of the moves is accomplished by checking the results

of the address modification to determine if the address exceeds the end
of the second field. When it does, the routine is complete.
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If a hundred values were to be moved this program would remain 20
bytes long, whereas the solution to the first problem would require a
program of 200 instructions.

The type of coding used in this example is called a “loop”. Although the
program loop in this case requires as many bytes as the original program,
more values could be moved without increasing the length of the program.
The greater the number of repetitive operations that are to be
accomplished, the greater the advantage of the loop type program over
straight line programming.

Important Note: The execution time required to move the five values is
significantly longer using the loop program than the straight line program.
In the straight line program, if a Zero Page operation is assumed, the
time to perform the total move is 30 cycles. Using the loop program, the
execution time to move five values is five times through the entire loop,
which takes 25 cycles. Therefore the time to move five values is 125
cycles.

While loops have an advantage in coding space efficiency, all loops cost
time. If the programmer has a problem that is extremely time dependent,
taking the loop out and going to straight line programming, even though
it is extremely inefficient in terms of its utilization of memory, will often
solve the timing problem.

The straight line programming technique becomes very useful in some
control applications. However, it is not recommended as a standard
technique but should only be used when there are extreme timing
problems. Using loops will normally save a significant number of bytes
but they will always take more time.

The technique used in the loop program example has two major
problems:

1. The necessity to modify program memory. This should be
avoided to take advantage of the ability to put programs into
read only memory with the corresponding savings in hardware
costs,
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2. Although this is the simplist form of computed addressing, less
program bytes would be necessary than the more sophisticated
form of program shown in the following flow chart:

CLEAR COUNTER

A/
FETCH FIELD 1 + COUNTER

!

STORE FIELD 2 + COUNTER

\

/
ADD 1 TO COUNTER

Not Equal

FINISH

Moving Five Bytes of Data with Counter
FIGURE 6.2

In the MCS650X microprocessor family, the counter is called an index
register. It is an 8-bit register which is loaded from memory and has the
ability to have one added fo it by an increment instruction (INX, INY) and
can be compared directly to memory using the compare index instruction
(CPX, CPY). Example 6.4 shows the program listing for the flow chart of
Figure 6.2.
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Example 6.4: Moving Five Bytes of Data with Index Registers

BYTES LABEL INSTRUCTION OPERAND COMMENTS

2 LDX 0 Load Index with Zero
3 LOOP LDA FIELD 1,X

3 STA FIELD 2,X

1 INX Increment Count

2 CPX 5 Compare for End

2 BNE LOOP
13 for Absolute

In this example, index register X is used as an index and as a counter. It
is initialized to zero. Data is fetched from memory at the address “FIELD
1 plus the value of register X”, and placed in A. The data is then written
from A to memory at the address “FIELD 2 plus the value of register X".
Register X is incremented by one and compared with 3 in order to
determine if all five data values have been transferred. If not the
program loops back to LOOP. In this example, “FIELD 1" is called the
“Base Address” which is the address to which indexing is referenced.

This only takes 11 or 13 bytes, depending on whether or not the field is
in Page Zero or in absolute memory. It still takes 13 or 15 cycles per byte
moved, again confirming that loops are excellent for coding space but
not for execution time.

It can be seen from the example that there are basically two criteria for
an index register; one, that it be a register which is easily incremented,
compared, loaded, and stored, and two, that in a single instruction one
can specify both the Base Address and the value of X.

In the MCS650X microprocessor, the way that the indexed instruction is
symbolically represented is OP CODE, Address, X. This indicates to the
symbolic assembler that an instruction OP CODE should be picked, which
should specify either the absolute address modified by the content of
index X register or Zero Page address modified by the content of index
X register.
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In performing these operations, the microprocessor fetches the instruction
OP CODE as previously defined, and fetches the address, modifies the
address from the memory by adding the index register to it prior to
loading or storing the value of memory.

The index register is a counter. As discussed previously, one of the
advantages of the flags in the microprocessor is that a value can be
modified and its results tested. Assume the last example is modified so
that instead of moving the first value in FIELD 1 to the first value in FIELD
2, the last value in FIELD 1 is moved first to the last value in FIELD 2, then
the next to the last value, etc. and finally the first value. With the index
register preloaded with 5 and using a decrement instruction the contents
of the index register would end at zero after the 5 fields of data were
transferred. The zero indicates that the number of times through the loop
is correct and the loop exited by use of the zero test. The program listing
for this modification is shown in Example 6.5:

Example 6.5: Moving Five Bytes of Data by Decrementing the Index

Register
LABEL INSTRUCTION OPERAND
LDX 5
LOOP LDA FIELD 1-1,X
STA FIELD 2—-1,X
DEX
BNE LOOP

In this example, Index Register X is again used as an Address Counter
but it will count backwards. It is initialized to five for this example. Data
is fetched from memory at the address “FIELD 1 plus the value of Register
X" and placed in A. The data is then written from A to memory at the
address “FIELD 2 plus the value of Register X.” Register X is decremented
by one. If the decremented value is not zero, as determined by a Branch
on Zero instruction, the program loops back to LOOP

The loop has been decreased to 9 or 11 bytes and the execution time
per byte has been decreased from 15 cycles to 13 cycles per value which
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shows the advantage of using the flag setting of the decrement index
instruction.

The two index registers, X and Y, can now be added to the system block
diagram as in Figure 6.3

[ DATA BUS ]

'stx | | ALU |(:>| A | | PCL | PCH | | 4 |
74 0 Y
| INTERNAL ADL |
A

7 A4
[ INTERNAL ADH |

ABL ABH
<

” J
MEMORY

Partial Block Diagram of MCS650X Including Index Registers
FIGURE 6.3

Each of the index registers is 8 bits long and is loaded and stored from
memory, using techniques similar to the accumulator. Because of this
ability, they can be considered as auxiliary channels to flow data through
the microprocessor. However, their primary use is in being added to
addresses fetched from memory to form a modified effective address,
as described previously. Both index registers have the ability to be
compared to memory (CPX, CPY) and to be incremented (INX, INY) and
decremented (DEX, DEY).
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Because of OP CODE limitations, X and Y have slightly different uses. X
is a little more flexible because it has Zero Page operations which Y does
not have with exception of LDX and STX. Aside from which modes they
modify, the registers are autonomous, independent and of equal value.

6.1 ABSOLUTE INDEXED
Absolute indexed address is absolute addressing with an index register
added to the absolute address. The sequences that occur for indexed

absolute addressing without page crossing are as follows:

Example 6.6: Absolute Indexed; with No Page Crossing

Address Data External Internal
Cycle Bus Bus Operation Operation

1 0100 OP CODE Fetch OP CODE  Increment PC to 101,
Finish Previous
Instruction

2 0101 BAL Fetch BAL Increment PC to 102,
Interpret Instruction

3 0102 BAH Fetch BAH Increment PC to 103,

Calculate BAL+X

4 BAH, BAL+X OPERAND Put Out
Effective
Address
5 0103 Next OP  Fetch Next Finish Operations
CODE OP CODE

BAL and BAH refer to the low and high order bytes of the base address,
respectively. While the index X was used in Example 6.7, the index Y is
equally applicable.

If a page is not crossed, the results of the address low + X does not cause
a carry. The processor is able to pipeline the addition of the 8-bit index
register to the lower byte of the base address (BAL) and not suffer any
time degradation for absolute indexed addressing over straight absolute
addressing. In other words, while BAH is being fetched, the add of X to
BAL occurs. Both addressing modes require four cycles with the only
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difference being that X or Y must be set at a known value and the OP
CODE must indicate an index X or Y.

The second possibility is that when the index register is added to the

address low of the base address that the resultant address is in the next
page. This is illustrated in Example 6.7.

Example 6.7: Absolute Indexed; with Page Crossing

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous
Operation Increment
PCto 101
2 0101 BAL Fetch BAL Interpret Instruction
Increment PC to 102
3 0102 BAH Fetch BAH Add BAL + Index
Increment PC to 103
4 BAH, BAL+X DATA Fetch DATA Add BAH + Carry
(ignore) (Data is ignored)
5 BAH+1, DATA Fetch DATA
BAL+X
6 0103 Next OP  Fetch Next Finish Operations
CODE OP CODE

The most substantial difference between the page crossing operation and
no page crossing is that during the fourth cycle, the address high and the
calculated address low is put out, thereby incorrectly addressing the
same page as the base address. This operation is carried on in parallel
with the adding of the carry to the address high. During the fourth cycle
the address high plus the carry from the adder is put on the address bus,
moving the operation to the next page. Thus there are two effects from
the page crossing. 1. The addressing of a false address. This is similar to
what happens in a branch relative during a page crossing. 2. The
operation takes one additional cycle while the new address high is
calculated. As with the branch relative this page crossing occurs
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independently of programmer action and there is no penalty in memory
for having crossed the page boundary. It is possible for the programmer
to predict a page crossing by the knowing the value of the base address
and the maximum offset value in the index register. If timing is of concern,
the base address can be adjusted so that the address field is always in
one page.

As with absolute addressing, absolute indexed is the most general form
of indexing. It is possible to do absolute indexed modified by X, and
absolute indexed modified by Y. Instructions which allow absolute
indexed by X are ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR,
ORA, ROL, SBC and STA.

The instructions which allow indexed absolute by Y are ADC, AND, CMP,
EOR, LDA, LDX, ORA, SBC and STA.

6.2 ZERO PAGE INDEXED

As with non-computed addressing, there is a memory use advantage to
the short-cut of Zero Page addressing. Except in LDX and STX instructions
which can be modified by Y, Zero Page is only available modified by X.
If the base address plus X exceeds the value that can be stored in a
single byte, no carry is generated, therefore there is no page crossing
phenomena. A wrap-around will occur within Page Zero. The following
example illustrates the internal operations of Zero Page indexing.
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Example 6.8: |lllustration of Zero Page Indexing

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE  Finish Previous
Operation,
0101 —» PC
2 0101 BAL Fetch Base Interpret Instruction,
Address Low 0102 —» PC
(BAL)
3 00,BAL DATA Fetch Add: BAL + X
(Dis- Discarded
carded) DATA
4 00,BAL+X DATA Fetch DATA
Address
5 0102 Next OP  Fetch Next Finish Operation
CODE OP CODE

As can be seen from the example, there is no time savings of Zero Page
indexing over absolute indexing without page crossing. In the case of the
indexed absolute during cycle 3 the address high is being fetched at the
same time as the addition of the index to address low. In the case of the
Zero Page, there is no opportunity for this type of overlap; therefore,
indexed Zero Page instructions take one cycle longer than non-indexed
instructions.

In both Zero Page indexed and absolute indexed with a page crossing,
there are incorrect, addresses calculated. Provisions have been made to
make certain that, only a READ operation occurs during this time. Memory
modifying operations such as STORE, SHIFT, ROTATE, etc. have all been
delayed until the correct address is available, thereby prohibiting any
possibility of writing data in an incorrect location and destroying the
previous data in that location.

As has been previously stated, there is no carry out of the Zero Page
operation. 00 is forced into address high under all circumstances in cycle
4. For example, if the index register containing a value of 10 is to be
added to base address containing a value of F7, the following operation
would occur:
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Example 6.9: Demonstrating the Wrap-Around

Cycle Address Bus Internal Operation
3 OOF7 F7 +10
0007

This indicated the wrap-around effect that occurs with Zero Page
indexing with page crossing. This wrap-around does not increase the
cycle time over that shown in the previous example.

Only index X is allowed as a modifier in Zero Page. Instructions which
have this feature include ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY,
LSR, ORA, ROL, SBC, STA and STY. Note that index Y is allowed in the
instructions LDX and STX.

6.3 INDIRECT ADDRESSING

In solving a certain class of problems, it is sometimes necessary to have
an address which is a truly computed value, not just a base address with
some type of offset, but a value which is calculated or sometimes
obtained as a group of addresses. In order to implement this type of
indexing or addressing, the use of indirect addressing has been
infroduced.

In the MCS650X family indirect operations have a special form. The basic
form of the indirect addressing is that of an instruction consisting of an
OP CODE followed by a Zero Page address. The microprocessor obtains
the effective address by picking up from the Zero Page address the
effective address of the operation. The indirect addressing operation is
much the same as absolute addressing except indirect addressing uses a
Zero Page addressing operation to indirectly access the effective
address. In the case of absolute addressing the value in the program
counter is used as the address to pick up the effective address low, one
is added to the program counter which is used to pick up the effective
address high. In the case of indirect addressing, the next value after the
OP CODE, as addressed with the program counter, is used as a pointer
to address the effective address low in the zero page. The pointer is then
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incremented by one with the effective address high fetched from the next
memory location. The next cycle places the effective address high (ADH)
and effective address low (ADL) on the address bus to fetch the data. An
illustration of this is shown in Figure 6.4.

0100 OP CODE

0101 IAL
00,
1AL ADL
00, IAL+1 ADH
ADL,
ADH DATA

Indirect Addressing — Pictorial Drawing
FIGURE 6.4

The address following the instruction is really the address of an address,
or “indirect” address. The indirect address is represented by IAL in the
figure.

A more detailed definition of indirect addressing is included in the
appendix.
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Although the MCS650X microprocessor family has indirect operations, it
has no simple indirect addressing such as described above. There are two
modes of indirect addressing in the MCS650X microprocessor family:

1.) indexed indirect and 2.) indirect indexed.

6.4 INDEXED INDIRECT ADDRESSING

The major use of indexed indirect is in picking up data from a table or
list of addresses to perform an operation. Examples where indexed
indirect is applicable is in polling I/O devices or performing string or
multiple string operations. Indexed indirect addressing uses the index
register X. Instead of performing the indirect as shown in the Figure 6.4,
the index register X is added to the Zero Page address, thereby allowing
varying address for the indirect pointer. The operation and timing of the
indexed indirect addressing is shown in Figure 6.5.

0101 IAL

/’ 00, IAL+0 ADL 1
ADH 1
00, IAL+2 ADL 2
ADH2,
ADL2 DATA 2

ADHS3,

ADHT, DATA 1
ADL1

00, IAL+X <g—oI

ADH 2

ADL3 DATA 3

ADH 3

N

Indexed Indirect Addressing
FIGURE 6.5
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Example 6.10: lllustration of Indexed Indirect Addressing

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE  Finish Previous
Operation,
0101 —» PC
2 0101 BAL Fetch BAL Interpret Instruction,
0102 —» PC
3 00,BAL Data Fetch Add BAL + X
(Dis- Discarded
carded) Data
4 00,BAL+X ADL Fetch ADL Add 1 to BAL + X
5 00,BAL+X+1 ADH Fetch ADH Hold ADH
6 ADH, ADL DATA Fetch DATA
7 0102 Next OP  Fetch Next OP Finish Operation
CODE CODE 0103 —» PC

One of the advantages of this type of indexing is that a 16-bit address
can be fetched with only two bytes of memory, the byte that contains the
OP CODE and the byte that contains the indirect pointer. It does require,
however, that there be a table of addresses kept in a read/write
memory which is more expensive than having it in read only memory.
Therefore, this approach is normally reserved for applications where use
of indexed indirect results in significant coding or throughput
improvement or where the address being fetched is a variable computed
address.

It is also obvious from the example that the user pays a minor time
penalty for this form of addressing in that indexed indirect always takes
six cycles to fetch a single operand which is 25% more than an absolute
address and 50% more than a Zero Page reference to an operand. As
in the Zero Page indexed, the operation in cycles three and four are
located in Zero Page and there is no ability to carry over into the next
page. It is possible to develop a value of the index plus the base address
where the result exceeded 255, in this case the address put out is a wrap-
around to the low part of the Page Zero.

86



Instructions which allow the use of indexed indirect are ADC, AND, CMP,
EOR, LDA, ORA, SBC, STA.

6.5 INDIRECT INDEXED ADDRESSING

The indirect indexed instruction combines a feature of indirect addressing
and a capability of indexing. The usefulness of this instruction is primarily
for those operations in which one of several values could be used as part
of a subroutine. By having an indirect pointer to the base operation and
by using the index register Y in the normal counter type form, one can
have the advantages of an address that points anywhere in memory,
combined with the advantages of the counter offset capability of the
index register.

Figure 6.6 illustrates the indirect indexed concept in flow form while

Example 6.11 indicates the internal operation of a non-page roll-over of
an indirect index.

0100 OP CODE

0101 IAL
00, IAL BAL
00, IAL+1 BAH
BAL
e
ALY

Indirect Indexed Addressing
FIGURE 6.6
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Example 6.11: Indirect Indexed Addressing (No Page Crossing)

Address Data
Cycle Bus Bus
1 0100 OP CODE
2 0101 IAL
3 00,lAL BAL
4 00,lAL+1 BAH
5 BAH,BAL+Y DATA
6 0102 Next OP
CODE

The indirect index still requires two bytes of program storage, one for
the OP CODE, one for the indirect pointer. Once beyond the indirect, the
indexing of the indirect memory location is just the same as though it was
an absolute indexed operation in the sense that if there is no page
crossing, pipelining occurs in the adding of the index register Y to address
low while fetching address high, and therefore, the non-page crossing
solution is one cycle shorter than the indexed indirect. In Example 6.12 it
is seen that the page crossing problem that occurs with absolute indexed

External

Operation
Fetch OP CODE

Fetch IAL

Fetch BAL
Fetch BAH
Fetch Operand

Fetch Next OP
CODE

Internal

Operation
Finish Previous

Operation,
0101 —» PC

Interpret Instruction,

0102 - PC
Add 1 to IAL
Add BAL +Y

Finish Operation
0103 = PC

page crossing also occurs with indirect indexed addressing.
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Example 6.12: Indirect Indexed Addressing (with Page Crossing)

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE  Finish Previous
Operation,
0101 —» PC
2 0101 IAL Fetch IAL Interpret Instruction,
0102 —» PC
3 00,IAL BAL Fetch BAL Add 1 to IAL
4 00,lAL+1 BAH Fetch BAH Add BAL +Y
5 BAH,BAL+Y DATA (Dis- Fetch DATA Add 1 to BAH
carded) (Discarded)
6 BAH+1 DATA Fetch DATA
BAL+Y
7 0102 Next OP  Fetch Next OP Finish Operation
CODE CODE 0103 —» PC

When there is a page crossing, the base address high and base address
low plus Y are pointing to an incorrect location within a referenced page.
However, it should be noted that the programmer has control of this
incorrect reference in the sense that it is always pointing to the page of
the base address. In one more cycle the correct address is referenced. As
was true in the case of absolute indexed, the data at the incorrect
address is only read. STA and the various read, modify, write memory
commands all operate assuming that there will be a page crossing, take
the extra cycle time to perform the add and carry and only perform a
write on the sixth cycle rather than taking advantage of the five cycle
short-cut which is available to read operations. This added cycle
guarantees that a memory location will never be written info with
incorrect data.

Instructions which allow the use of indexed indirect are ADC, AND, CMP,
EOR, LDA, ORA, SBC, STA.
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In the following two examples can be seen a comparison between the use
of absolute modified by Y and indirect indexed addressing.

In these examples the same function is performed. Values from two
memory locations are added and the result stored in a third memory
location, assuming that there are several values to be added. The first
example deals with known field locations. The second example, such as
might be traditionally used in subroutines, deals with field locations that
vary between routines. A two byte pointer for each routine using the
subroutine is stored in Page Zero. The number of values to be added for
each routine is also stored.

Example 6.13: Absolute Indexed Add — Sample Program

#Bytes Cycles Label Instruction Comments
2 2 START LDY #COUNT—1 Set Y = End of FIELD
3 4 LOOP LDA FIELD 1,Y Load Location 1
3 4 ADC FIELD 2,Y Add Location 2
3 4 STA FIELD 3,Y Store in Location 3
1 2 DEY
2 3 BPL LOOP Check for Less Than Zero
14 19 Time for 10 Bytes = 171 Cycles

Example 6.14: Indirect Indexed Add — Sample Program

#Bytes Cycles Label Instruction Comments
2 2 START LDY #COUNT—=1 Set Y = End of FIELD
2 5 LOOP LDA (PNT1), Y Load FIELD 1 Value
2 5 ADC (PNT2), Y Add FIELD 2 Value
2 5 STA (PNT3), Y Store FIELD 3 Value
1 2 DEY
2 3 BPL LOOP Check for Less Than Zero
11 22 Time for 10 Bytes = 201 Cycles

+ 6 Bytes for Pointers
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The “count” term in these examples represents the number of sets of
values to be added and stored. Loading the index register with COUNT-
1 will allow a fall through the BPL instruction when computation on all set
of values has been completed.

There is a definite saving in program storage using indirect because it
only requires two bytes for each indirect pointer, the OP CODE plus the
pointer of the Page Zero location, whereas in the case of the absolute, it
takes three bytes, the OP CODE, address low and address high.

It is noted that there are six bytes of Page Zero memory used for pointers,
two bytes for each pointer. The number of memory locations allocated to
the problem are 17 for the indirect and 14 for the problem where the
values are known. The execution time is longer in the indirect loop. Even
though the increase in time for a single pass through the loop is only three
cycles, if many values are to be transferred, it adds up. It is important to
note that loops require time for setup but it is only used once. But in the
loop itself, additional time is multiplied by the number of times the
program goes through the loop; therefore, on problems where execution
time is important, the time reduction effort should be placed on the loop.

Even though the loop time is longer and the actual memory expended is
greater for the indexed indirect add, it has the advantage of not
requiring determination of the locations of FIELD 1, FIELD 2, and FIELD 3
at the time the program was written as is necessary with absolute.

An attempt to define problems to take advantage of this shorter memory
and execution time by defining fields should be investigated first.
However, in almost every program, the same operation must be
performed several times. In those cases, it is sometimes more useful to
define a subroutine and set the values that the subroutine will operate on
as fields in memory. Pointers to these fields are placed in the Zero Page
of memory and then the indexed indirect operation is used to perform
the function. This is the primary use of the indexed indirect operation.
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6.6 INDIRECT ABSOLUTE

In the case of all of the indirect operations previously described, the
indirect reference was always to a Page Zero location from which is
picked up the effective address low and effective address high. There is
an exception in the MCS650X microprocessor family for the jump
instruction in which absolute indirect jumps are allowed. The use of the
absolute indirect jump is best explained in the discussion on interrupts
where the addressing mode and its capabilities are explained.

6.7 APPLICATION OF INDEXES

As has been developed in many of the previous examples, an index
register has primary values as a modifier and as a counter. As a modifier
to a base address operation, it allows the accessing of contiguous groups
of data by simple modification of the index. This is the primary
application of indexes and it is for this purpose they were created virtue
of the fact that all of the MCS650X instructions have the base address in
the instruction, or in the case of the indirect, in the pointer, a single index
can usually be used to service an entire loop, because each of the many
instructions in the loop normally are referring to the same relative value
in each of the lists. An example is adding the third byte of a number to
its corresponding third byte of another number, then storing the result in
the memory location representing the third byte of the result; therefore,
the index register only needs to contain three to accomplish all three of
these offset functions.

Some other microprocessors use internal registers as indirect pointers. The
single register requirement is a significant advantage of the type of
indexing done in the MCS650X. Even though the MCS650X has two
indexes, more often than not, a single index will solve many of the
problems because of the fact that the data is normally organized in
corresponding fields.

The second feature of the MCS650X type of indexing is that, if used

properly, the index register also contains the count of the operations to
be performed.
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The examples have tried to show how to take advantage of that feature.
There are two approaches to counting; forward counting and reverse
counting. In forward counting, the data in memory can be organized such
that the index register starts at zero and is added to on each successive
operation. The disadvantage of this type of approach is that the compare
index instruction, as used in Example 6.13 must be inserted into the loop

in order to determine that the correct number of operations is completed.

The reverse counting approach has been used in the latter examples. The
data must be organized for reverse counting operation. The first value to
be operated on is at the end of the FIELD, the next value is one memory
location in front of that, etc. The advantage of this type of operation is
that it takes advantage of the combined decrement and test capability
of the processor. There are two ways to use the test. First there is the case
where the actual number of operations to be performed is loaded into
the index register such as was done in Example 6.13. In this case, the
index contains the correct count but if added to the base directly, would
be pointing to one value beyond the FIELD because the base address
contains the first byte. Therefore, when using the actual count in the index
register, one always references to the base address minus one. This is
easily accomplished as shown in the examples. The cross assembler
accepts symbolic references in the form of base address minus one, and
the microprocessor very carefully performs the operation shown.

The advantage of the actual count in the register is that the branch if not
equal instruction (BNE) can be used because the value of the register goes

to zero on the last operation.

The second alternative is to load the counter with the count minus one as
done in Example 6.14. In this case, the actual value of the base address
is used in the offset. However, the branch back to loop now is a branch
plus, remembering that the value in the index register will not go to minus

(all ones) until we decrement past zero.
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Values of count minus one through zero will all take the branch. It is only
when attempting to reference less than the base address that the loop
will be completed.

Either approach gives minimum coding and only requires that the user
develop a philosophy of always organizing his data with the first value
at the end. In many cases, the operations such as MOVE can be
performed even if the data is organized the other way. Experienced
programmers find that this reverse counting form is actually more
convenient to use and always results in minimum loop time and space.

Although for most applications, the 8-bit index register allows simple
count in offset operations, there are a few operations where the 256
count that is available in the 8-bit register is not enough to perform the
indexed operations. There are two solutions to this problem. First, to code
the program with two sets of bases, that is duplicating the coding for the
loop with two different address highs, each one a page apart. The
second, more useful solution, is to go to indirect operations because the
indirect pointer can be modified to allow an infinite indexed operation.
An example of the move done under 256 and over 256 is shown in the
following example:

Example: 6.15: Move N Bytes (N<256)

Number of Program Instruction OPERAND

Cycles Label Mnemonics  FIELD Comments
2 LDX #BLOCK Setup 2 Cycles
4 LOOP LDA FROM —1,X
4 STA TO —-1,X LOOP Time:
2 DEX 13 Cycles
3 BNE LOOP

Memory required: 11 Bytes
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Example: 6.16: Move N Bytes (N>256)

Number of Program  Instruction OPERAND
Cycles Label Mnemonics FIELD
2 MOVE LDA H#FROML
3 STA FRPOINT
2 LDA #FROMH
3 STA FRPOINT+1
2 LDA H#TOL
3 STA TOPOINT
2 LDA #TOH
3 STA TOPOINT+1
2 LDX #BLOCKS
2 LDY #0
5 LOOP LDA  (FRPOINT),Y
6 STA (TOPOINT),Y
2 DEY
3 BNE LOOP
5 SPECIAL INC FRPOINT+1
5 INC TOPOINT+1
2 DEX
2 BMI ouTt
3 BNE LOOP
2 LDY #COUNT
3 BNE LOOP
ouTt

Memory required: 40 Bytes
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CHAPTER 7

INDEX REGISTER INSTRUCTIONS

The index registers can be treated as auxiliary-general purpose
registers, having the added ability of being incremented and
decremented because of the normal operations in which they are
required to perform.

7.0 LDX — LOAD INDEX REGISTER X FROM MEMORY

Load the index register X from memory.

The symbolic notation is M — X.

LDX does not affect the C or V flags; sets Z if the value loaded was zero,
otherwise resets it; sets N if the value loaded in bit 7 is a 1; otherwise N
is reset, and affects only the X register. The addressing modes for LDX

are Immediate; Absolute; Zero Page; Absolute Indexed by Y; and Zero
Page Indexed by Y.

7.1 LDY — LOAD INDEX REGISTER Y FROM MEMORY

Load the index register Y from memory.

The symbolic notation is M — Y.

LDY does not affect the C or V flags, sets the N flag if the value loaded
in bit 7 is a 1, otherwise resets N, sets Z flag if the loaded value is zero
otherwise resets Z and only affects the Y register. The addressing modes

for load Y are Immediate; Absolute; Zero Page; Zero Indexed by X,
Absolute Indexed by X.
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7.2 STX — STORE INDEX REGISTER X IN MEMORY
Transfers value of X register to addressed memory location.
The symbolic notation is X = M.

No flags or registers in the microprocessor are affected by the store
operation. The addressing modes for STX are Absolute, Zero Page, and
Zero Page Indexed by Y.

7.3 STY — STORE INDEX REGISTER Y IN MEMORY
Transfer the value of the Y register to the addressed memory location.
The symbolic notation is Y — M.

STY does not affect any flags or registers in the microprocessor. The
addressing modes for STY are Absolute; Zero Page; and Zero Page
Indexed by X.

74 INX = INCREMENT INDEX REGISTER X BY ONE

Increment X adds 1 to the current value of the X register. This is an 8-bit
increment which does not affect the carry operation, therefore, if the
value of X before the increment was FF, the resulting value is 00. The
symbolic notation is X + 1 — X. INX does not affect the carry or overflow
flags; it sets the N flag if the result of the increment has a one in bit 7,
otherwise resets N; sets the Z flag if the result of the increment is O,
otherwise it resets the Z flag. INX does not affect any other register other
than the X register. INX is a single byte instruction and the only addressing
mode is Implied.

7.5 INY — INCREMENT INDEX REGISTER Y BY ONE

Increment Y increments or adds one to the current value in the Y register,
storing the result in the Y register. As in the case of INX the primary
application is to step through a set of values using the Y register. The
symbolic notation is Y + 1 — Y. The INY does not affect the carry or
overflow flags, sets the N flag if the result of the increment has a one in
bit 7, otherwise resets N, sets Z if as a result of the increment the Y register
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is zero otherwise resets the Z flag. Increment Y is a single byte instruction
and the only addressing mode is Implied.

7.6 DEX — DECREMENT INDEX REGISTER X BY ONE

This instruction subtracts one from the current value of the index register
X and stores the result in the index register X.

The symbolic notationis X =1 — X.

DEX does not affect the carry or overflow flag, it sets the N flag if it has
bit 7 on as a result of the decrement, otherwise it resets the N flag; sets
the Z flag if X is a O as a result of the decrement, otherwise it resets the
Z flag.

DEX is a single byte instruction, the addressing mode is Implied.

7.7 DEY — DECREMENT INDEX REGISTER Y BY ONE

This instruction subtracts one from the current value in the index register
Y and stores the result into the index register Y. The result does not affect
or consider carry so that the value in the index register Y is decremented
to O and then through O to FF.

Symbolic notationis Y — 1 = Y.

Decrement Y does not affect: the carry or overflow flags; if the Y register
contains bit 7 on as a result of the decrement the N flag is set, otherwise
the N flag is reset. If the Y register is O as a result of the decrement, the
Z flag is set otherwise the Z flag is reset. This instruction only affects the
index register Y.

DEY is a single byte instruction and the addressing mode is Implied.
NOTE: Decrement of the index registers is the most convenient method of
using the index registers as a counter, in that the decrement involves

setting the value N on as a result of having passed through O and sets Z
on when the results of the decrement are 0.
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7.8 CPX — COMPARE INDEX REGISTER X TO MEMORY

This instruction subtracts the value of the addressed memory location from
the content of index register X using the adder but does not store the
result; therefore, its only use is to set the N, Z and C flags to allow for
comparison between the index register X and the value in memory.

The symbolic notation is X — M.

The CPX instruction does not affect any register in the machine; it also
does not affect the overflow flag. It causes the carry to be set on if the
absolute value of the index register X is equal to or greater than the
data from memory. If the value of the memory is greater than the content
of the index register X, carry is reset. If the results of the subtraction
contain a bit 7, then the N flag is set, if not, it is reset. If the value in
memory is equal to the value in index register X, the Z flag is set,
otherwise it is reset.

The addressing modes for CPX are Immediate, Absolute and Zero Page.

7.9 CPY — COMPARE INDEX REGISTER Y TO MEMORY

This instruction performs a two's complement subtraction between the
index register Y and the specified memory location. The results of the
subtraction are not stored anywhere. The instruction is strictly used to set
the flags.

The symbolic notation for CPY is Y — M.

CPY affects no registers in the microprocessor and also does not affect
the overflow flag. If the value in the index register Y is equal to or
greater than the value in the memory, the carry flag will be set, otherwise
it will be cleared. If the results of the subtraction contain bit 7 on, the N
bit will be set, otherwise it will be cleared. If the value in the index
register Y and the value in the memory are equal, the zero flag will be
set, otherwise it will be cleared.

The addressing modes for CPY are Immediate, Absolute and Zero Page.
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7.10  TRANSFERS BETWEEN THE INDEX REGISTERS AND
ACCUMULATOR

There are four instructions which allow the accumulator and index
registers to be interchanged. They are TXA, TAX which transfers the
contents of the index register X to the accumulator A and back, and TYA,
TAY which transfers the contents of the index register Y to the accumulator
A and back. The usefulness of this will be discussed after the instructions.

7.11 TAX —TRANSFER ACCUMULATOR TO INDEX X

This instruction takes the value from accumulator A and transfers or loads
it into the index register X without disturbing the content of the
accumulator A.

The symbolic notation for this is A = X.

TAX only affects the index register X, does not affect the carry or
overflow flags. The N flag is set if the resultant value in the index register
X has bit 7 on, otherwise N is reset. The Z bit is set if the content of the

register X is O as a result of the operation, otherwise it is reset. TAX is a
single byte instruction and its addressing mode is Implied.

7.12  TXA — TRANSFER INDEX X TO ACCUMULATOR

This instruction moves the value that is in the index register X to the
accumulator A without disturbing the content of the index register X.

The symbolic notation is X — A.

TXA does not affect any register other than the accumulator and does not
affect the carry or overflow flag. If the result in A has bit 7 on, then the
N flag is set, otherwise it is reset. If the resultant value in the accumulator

is O, then the Z flag is set, otherwise it is reset.

The addressing mode is Implied, it is a single byte instruction.
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7.13 TAY — TRANSFER ACCUMULATOR TO INDEX Y

This instruction moves the value of the accumulator into index register Y
without affecting the accumulator.

The symbolic notation is A = Y.

TAY instruction only affects the Y register and does not affect either the
carry or overflow flags. If the index register Y has bit 7 on, then N is set,
otherwise it is reset. If the content of the index register Y equals O as a
result of the operation, Z is set on, otherwise it is reset.

TAY is a single byte instruction and the addressing mode is Implied.

7.14 TYA — TRANSFER INDEX Y TO ACCUMULATOR

This instruction moves the value that is in the index register Y to
accumulator A without disturbing the content of the register Y.

The symbolic notation is Y — A.

TYA does not affect any other register other than the accumulator and
does not affect the carry or overflow flag. If the result in the accumulator
A has bit 7 on, the N flag is set, otherwise it is reset. If the resultant value
in the accumulator A is O, then the Z flag is set, otherwise it is reset.

The addressing mode is Implied and it is a single byte instruction.

Some of the applications of the transfer instructions between accumulator
A and index registers X, Y are those when the user wishes to use the index
register to access memory locations where there are multiple byte values
between the addresses. In this application a count is loaded into the index
register, the index register is transferred to the accumulator, a value such
as 5,7, 10, etc. is added immediate to the accumulator and results stored
back into the index register using the TAX or TAY instruction. The
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consequence of this type of operation is that it allows the microprocessor
to address non-consecutive locations in memory. Another application is
where the internal transfer instructions allow the index registers to hold
intermediate values for the accumulator which allows rapid transfer to
and from the accumulator to help solve high speed data shuffling
problems.

7.15  SUMMARY OF INDEX REGISTER APPLICATIONS AND
MANIPULATIONS

Primary use of index register X and Y is as offset and counters for data
manipulation in which the index register is used to compute an address
based on the value of the index register plus base address specified by
the user, either in a fixed instruction format or in a variable pointer type
format. In order to operate as both an offset and counter, index registers
may be incremented or decremented by one or compared to values from
memory. There are limitations on the applications of each of the index
registers which have to do with formats which are unique to certain
instruction addressing modes. Because of the ability of the index registers
to be loaded, changed and stored, they are also useful as general
purpose registers. They can be used as interim storages for moves
between memory locations or for moves between memory and the
accumulator.

One of the optimum uses of the indexing concept is the case when the
index register is being used both as an offset and a counter. This type of
operation uses the ability of the microprocessor to perform a decrement
function on the index registers and set flags. Therefore, a single
decrement instruction not only changes the value in the counter but can
also perform a test on the count value.
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CHAPTER 8

STACK PROCESSING

8.0 INTRODUCTION TO STACK AND TO PUSH DOWN STACK
CONCEPT

In all of the discussions on addressing, it has been assumed that either the
exact location or at least a relation to an exact location of a memory
address was known.

Although this is true in most of the programming for control applications,
there are certain types of programming and applications which require
that the basic program not be working with known memory locations but
only with a known order for accessing memory. This type of programming
is called re-entrant coding and is often used in servicing interrupts.

To implement this type of addressing, the microprocessor maintains a
separate address generator which is used by the program to access
memory. This address generator uses a push down stack concept.

Discussions of push down stacks are usually best stated considering that if
one were given 3 cards, an ace, a king and a ten and were told that the
order of cards was important and asked to lay them down on the table
in the order in which they were given, ace first, the king on top of it and
finally the ten, and then if they were retrieved, 1 card at a time, the ten
is retrieved first even though it was put on last, the king is retrieved
second, the ace retrieved last, even though it was put on first.

The only commands needed to implement this operation are “put next
card on stack” and “pull next card from the stack.” The stack could be
processing clubs and then go to diamonds and back to clubs. However,
we know that while we are processing clubs, we will always find ten first,
king second, etc.
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The hardware implementation of the ordered card stack which just
described is a 16-bit counter, into which the address of a memory location
is stored. This counter is called a “Stack Pointer.” Every time data is to be
pushed onto the stack, the stack pointer is put out on the address bus,
data is written into the memory addressed by the stack pointer, and the
stack pointer is decremented by 1 as may be seen in Example 8.1. Every
time data is pulled from the stack, the stack pointer is incremented by 1.
The stack pointer is put out on the address bus, and data is read from the
memory location addressed by the stack pointer. This implementation
using the stack pointer gives the effect of a push down stack which is
program independent addressing.

Example 8.1: Basic stack may for 3-deep JMP to subroutine sequence
Stack Address Data
O1FF PCH1
O1FE PCL1
O1FD PCH2
O1FC PLC2
O1FB PCH3
O1FA PCL3
01F9

In the above example, the stack pointer starts out at O1FF. The stack
pointer is used to store the first state of the program counter by storing
the content of program counter high at O1FF and the content of program
counter low at O1FE. The stack pointer would now be pointed at O1FD.
The second time the store program count is performed, the program
counter high number is stored on the stack at OTFD and the program
counter low is stored at O1FC. The stack pointer would now be pointing
at O1FB. The same procedure is used to store the third program counter.

When data is taken from the stack, the PCL3 will come first and the PCH3
will come second just by adding 1 to the stack pointer before each
memory read. The example above contains the program count for 3
successive jump and store operations where the jump transfers control to
a subroutine and stores the value of the program counter onto the stack
in order to remember to which address the program should return after
completion of the subroutine.
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Following is an example of a program that would create the Example
8.1 stack operation.

Example 8.2: Basic Stack Operation

Program
Counter Label Instruction
PC1 Jump to Subroutine 1 —
L[]
L]
L]
SUB1 ¢
PC2 Jump to Subroutine 2
L]
L]
L]
L]
SUB2 ¢
PC3 Jump to Subroutine 3 T
L]
L]
L]
L]
SUB3 D
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This is known as subroutine nesting and is often encountered in solving
complex control equations.

To correctly use the stack for this type of operation requires a jump to
subroutine and a return from subroutine instruction.

8.1 JSR — JUMP TO SUBROUTINE

This instruction transfers control of the program counter to a subroutine
location but leaves a return pointer on the stack to allow the user to return
to perform the next instruction in the main program after the subroutine
is complete. To accomplish this, JSR instruction stores the program counter
address which points to the last byte of the jump instruction onto the stack
using the stack pointer. The stack byte contains the program count high
first, followed by program count low. The JSR then transfers the addresses
following the jump instruction to the program counter low and the
program counter high, thereby directing the program to begin at that
new address.

The symbolic notation for this is:
PC + 2, (PC + 1) = PCL, (PC + 2) = PCH.

The ISR instruction affects no flags, causes the stack pointer to be
decremented by 2 and substitutes new values into the program counter
low and the program counter high. The addressing mode for the JSR is
always Absolute.

Example 8.3 gives the details of a JSR instruction.

Example 8.3: lllustration of JSR instruction

Program Memory

PC Data
0100 JSR
0101 ADL
0102 ADH Subroutine
Stack Memory
Stack
Pointer Stack
O1FD
O1FE 02
O1FF 03
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Cycle Address Data External Internal

Bus Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous
Instruction Operation; Increment
PCto 0101
2 0101 New ADL Fetch New ADL Decode JSR;
Increment PC to 0102
3 O1FF Store ADL
4 O1FF PCH Store PCH Hold ADL, Decrement S
to OTFE
5 O1FE PCL Store PCL Hold ADL, Decrement S
to OTFD
6 0102 ADH Fetch ADH Store Stack Pointer
7 ADH, ADL New OP Fetch New ADL — PCL
CODE OP CODE ADH — PCH

*S Denotes “Stack Pointer.”

In this example, it can be seen that during the first cycle the
microprocessor fetches the JSR instruction. During the second cycle,
address low for new program counter low is fetched. At the end of cycle
2, the microprocessor has decoded the JSR instruction and holds the
address low in the microprocessor until the stack operations are complete.

NOTE: The stack is always stored in Page 1 (Hex address 0100-01FF).

The operation of the stack in the MCS650X microprocessor is such that
the stack pointer is always left pointing at the next memory location into
which data can be stored. In Example 8.3, the stack pointer is assumed
to be at O1FF in the beginning and PC at location 0100. During the third
cycle the microprocessor puts the stack pointer onto the address lines and
on the fourth writes the contents of the current value of the program
counter high, 01, into the memory location indicated by the stack pointer
address. During the time that the write is being accomplished, the stack
pointer is being automatically decremented by 1 to O1FE. During the fifth
cycle the PCL is stored in the next memory location with the stack pointer
being automatically decremented.

It should be noted that the program counter low, which is now stored in
the stack, is pointing at the last address in the JSR sequence. This is not
what would be expected as a result of a JSR instruction. It would be
expected that the stack points at the next instruction. This apparent
anomaly in the machine is corrected during the Return from Subroutine
instruction.
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Note: At the end of the JSR instruction, the values on the stack contain the
program counter low and the program counter high which referenced the
last address of the JSR instruction. Any subroutine calls which want to use
the program counter as an intermediate pointer must consider this fact. It
should be noted also that the Return from Subroutine instruction performs
an automatic increment at the end of the RTS which means that any
program counters which are substituted on the stack must be 1 byte or 1
pointer count less than the program count to which the programmer
expects the RTS to return.

The advantage of delaying the accessing of the address high until after
the current program counter can be written in the stack is that only the
address low has to be stored in the microprocessor. This has the effect of
shortening the JSR instruction by 1 byte and also minimizing internal
storage requirements.

After both program counter low and high have been transferred to the
stack, the program counter is used to access the next byte which is the
address high for the JSR. During this operation, the sixth cycle, internally
the microprocessor is storing the stack pointer which is now pointing at
O1FD or the next location at which memory can be loaded.

During the seventh cycle the address high from the data bus and the
address low stored in the microprocessor are transferred to the new
program counter and are used to access the next OP CODE, thus making
JSR a 6-cycle instruction.

At the completion of the subroutine the programmer wants to return to the
instruction  following the Jump-to-Subroutine instruction. This s
accomplished by transferring the last 2 stack bytes to the program
counter which allows the microprocessor to resume operations at the
instruction following the JSR, and it is done by means of the RTS instruction.

8.2 RTS — RETURN FROM SUBROUTINE

This instruction loads the program count low and program count high from
the stack into the program counter and increments the program counter
so that it points to the instruction following the JSR. The stack pointer is

adjusted by incrementing it twice.

The symbolic notation for the RTS is PCT\, INC PC.
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The RTS instruction does not affect any flags and affects only PCL and
PCH. RTS is a single-byte instruction and its addressing mode is Implied.

The following Example 8.4 gives the details of the RTS instruction. It is the
complete reverse of the JSR shown in Example 8.3.

Example 8.4: lllustration of RTS instruction

Program Memory

PC Data
0300 RTS
0301 2

Stack Memory
Stack Pointer Stack
O1FD 2
O1FE 02
O1FF 01

Return from Subroutine (Example)

Cycle Address Data External Internal
Bus Bus Operation Operation
1 0300 OP CODE Fetch OP CODE Finish Previous
Operation, 0301 = PC
2 0301 Discarded Fetch Discarded Decode RTS
Data Data
3 O1FD Discarded Fetch Discarded Increment Stack Pointer
Data Data to OTFE
4 O1FE 02 Fetch PCL Increment Stack Pointer
to OTFF
5 O1FF 01 Fetch PCH
6 0102 Discarded Put Out PC Increment PC by 1 to
Data 0103
7 0103 Next OP Fetch Next OP

CODE CODE

As we can see, the RTS instruction effectively unwinds what was done to
the stack in the JSR instruction. Because RTS is a single-byte instruction it
wastes the second memory access in doing a look-ahead operation.
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During the second cycle the value located at the next program address
after the RTS is read but not used in this operation. It should be noted
that the stack is always left pointing at the next empty location, which
means that to pull off the stack, the microprocessor has to wait 1 cycle
while it adds 1 to the stack address. This is done to shorten the interrupt
sequence which will be discussed below; therefore, cycle 3 is a dead
cycle in which the microprocessor fetches but does not use the current
value of the stack and, like the fetch of address low on Indexed and Zero
Page Indexed operations, does nothing other than initialize the
microprocessor to the proper state. It can be seen that the stack pointer
decrements as data is pushed on to the stack and increments as data is
pulled from the stack. In the fourth cycle of the RTS, the microprocessor
puts out the O1FE address, reads the data stored there which is the
program count low which was written in the second write cycle of the JSR.
During the fifth cycle, the microprocessor puts out the incremented stack
picking up the program count high which was written in the first write cycle
of the JSR.

As is indicated during the discussions of JSR, the program counter stored
on the stack really points to the last address of the JSR instruction itself;
therefore, during the sixth cycle the RTS causes the program count from
the stack to be incremented. That is the only purpose of the sixth cycle.
Finally, in the seventh cycle, the incremented program counter is used to
fetch the next instruction; therefore, RTS takes 6 cycles.

Because every subroutine requires 1 JSR followed by 1 RTS, the time to
jump to and return from a subroutine is 12 cycles.

In the previous 2 examples, we have shown the operations of the JSR
located in location 100 and the RTS located in location 300. The following
pictorial diagram, Example 8.5, illustrates how the memory map for this
operation might look:
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Example 8.5: Memory map for RTS instruction

Address
Bus Data
100 JSR

101 04 —
102 02 —
103 Next InsTrucﬁonq—I

0204 First Instruction of Subroutine €——

— 0300 RTS

With this capability of subroutining, the microprocessor allows the
programmer to go from the main program to 1 subroutine, to the second
subroutine, to a third subroutine, then finally working its way back to the
main program. Example 8.6 is an expansion of Example 8.2 with the
returns included.

Example 8.6: Expansion of RTS memory map

Main Program

JSR SUB1
— Next Inst. |
L» SUB1 Stack Located at
O1FF, O1FE

Test a Value

JSR SUB2
—
RTS
— Stack Located at
SUB2 | 01FD, 01FC
JSR SUB3
> Stack Located at

O1FB, OTFA

| RTS
SUB3

RTS Q
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This concept is known as nesting of subroutines, and the number of
subroutines which can be called and returned from in such a manner is
limited by only the length of the stack.

8.3 IMPLEMENTATION OF STACK IN MCS6501 THROUGH
MCS6505

As we have seen, the primary requirement for the stack is that irrespective
of where or when a stack operation is called, the microprocessor must
have an independent counter or register which contains the current
memory location value of the stack address. This register is called the
Stack Pointer, S. The stack becomes an auxiliary field in memory which is
basically independent of programmer control. We will discuss later how
the stack pointer becomes initialized, but once it is initialized, the primary
requirement is that it be self-adjusted; in other words, operations which
put data on the stack cause the pointer to be decremented automatically;
operations which take data off from the stack cause the pointer to be
incremented automatically. Only under rare circumstances should the
programmer find it necessary to move his stack from one location to
another if he is using the stack as designed.

On this basis, there is no need for a stack to be longer than 256 bytes.
To perform a single subroutine call takes only 2 bytes of stack memory.
To perform an interrupt takes only 3 bytes of stack memory. Therefore,
with 256 bytes, one can access 128 subroutines deep or interrupt
ourselves 85 times. Therefore the length of the stack is extremely unlikely
to be limiting. The MCS650I through MCS6505 have a 256-byte stack
length.

Figure 8.1, which is now the complete block diagram, shows all of the
microprocessor registers. The 8-bit stack pointer register, S, has been
added. It is initialized by the programmer and thereafter automatically
increments or decrements, depending on whether data is being put on to
the stack or taken off the stack by the microprocessor under control of
the program or the interrupt lines.
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The primary purpose of the stack is to furnish a block of memory locations
in which the microprocessor can write data such as the program counter
for use in later processing. In many control systems the requirements for
Read/Write memory are very small and the stack just represents another
demand on Read /Write memory. Therefore these applications would like
the stack to be in the Page Zero location in order that memory allocation
for the stack, the Zero Page operations, and the indirect addresses can
be performed, therefore, one of the requirements of a stack is that it be
easily locatable into Page Zero.

On the other hand, if more than 1 page of RAM is needed because of
the amount of data that must be handled by the user programs, having
the stack in Page Zero is an unnecessary waste of Page Zero memory in
the sense that the stack can take no real advantage of being located in
Zero Page, whereas other operations can.
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In each of the examples, the stack has been located at high order address
01 followed by a low order address. In the same manner as the
microprocessor forces locations 00 on to the high order 8 bits of the
address lines for Zero Page operations, the microprocessor automatically
puts 01 Hex on to the high order 8-bit address lines during each stack
operation. This has the advantage to the user of locating the stack into
Page One of memory which would be the next memory location added
if the Zero Page operation requirements exceed Page Zero memory
capacity. This has the advantage of the stack not requiring memory to be
added specifically for the stack but only requiring the allocation of
existing memory locations. It should be noted that the selected addressing
concepts of the MCS650X microprocessor support devices would involve
connecting the memories such that bit 8, which is the selection bit for the
Page One versus Page Zero, is a “don't care™ for operations in which the
user does not need more than 1 page of Read /Write memory. This gives
the user the effect of locating stack in rage Zero for those applications.

The second feature that should be noted from the examples is that the
stack was located at the end of Page One and decremented from that
point towards the beginning of the page. This is the natural operation of
the stack. RAM memory comes in discrete increments, 64, 128, 256 bytes
so the normal method of allocating stack addressing is for the user to
calculate the number of bytes probably needed for stack access. This
could be done by analyzing the number of subroutines which might be
called and the amount of data which might be put onto the stack in order
to communicate between subroutines or the number of interrupts plus
subroutines which might occur with the respective data that would be
stored on the stack for each of them. By counting 3 bytes for each
interrupt, 2 bytes for each jump to subroutine, plus 1 byte for each
programmer-controlled stack operation, the microprocessor designer can
estimate the amount of memory which must be allocated for the stack.
This is part of his decision-making process in deciding how much memory
is necessary for his whole program.

Once the allocation has been made, it is recommended that the user
assign his working storage from the beginning of memory forward and
always load his stack at the end of either Page Zero, Page One, or at
the end of his physical memory which is located in one of those locations.
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This will give the effect of having the highest bytes of memory allocated
to the stack, lower bytes of memory allocated to user working storage
and hopefully the two shall never overlap.

It should be noted that the natural operation of the stack, which often is
called by hardware not totally under program control, is such that it will
continue to decrement throughout the page to which it is allocated
irrespective of the user's desire to have it do so. A normal mistake in
allocation in memory can result in the user writing data into a memory
location and later accessing it with another subroutine or another part of
his program, only to find that the stack has very carefully written over
that area as the result of its performing hardware control operations. This
is one of the more difficult problems to diagnose. If this problem is
suspected by the programmer, he should analyze memory locations
higher than unexplained disturbed locations.

There is a distinctive pattern for stack operations which are unique to the
user's program but which are quite predictable. An analysis of the value
which has been destroyed will often indicate that it is part of an address
which would normally be expected during the execution of the program
between the time data was stored and the time it was fetched. This is a
very strong indication of the fact that the stack somehow or other did get
into the user's program area. This is almost always caused by improper
control of interrupt lines or unexpected operations of interrupt or
subroutine calls and has only 2 solutions: (1) If the operation is normal
and predictable, the user must assign more memory to his program and
particularly reassign his memory such that the stack has more room to
operate; or (2) if the operation of the interrupt lines is not predictable,
attention must be given to solving the hardware problem that causes this
type of unpredictable operation.

8.3.1 Summary of Stack Implementation

The MCS6501 through MCS6505 microprocessors have a single 8-bit
stack register. This register is automatically incremented and
decremented under control of the microprocessor to perform stack
manipulation operations, under direction of the user program or the
interrupt lines. Once the programmer has initialized the stack pointer to
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the end of whatever memory he wants the stack to operate in, the
programmer can ignore stack addressing other than in those cases where
there is an interference between stack operations and his normal
program working space.

In the MCS6501 through MCS6505, the stack is automatically located in
Page One. The microprocessor always puts out the address 0100 plus
stack register for every stack operation. By selected memory techniques,
the user can either locate the stack in Page Zero or Page One, depending
on whether or not Page One exists for his hardware.

8.4 USE OF THE STACK BY THE PROGRAMMER

Discussed in Section 8.1 was the use of the JSR to call a subroutine.
However, not indicated was the technique by which the subroutine knew
which data to operate on. There are 3 classical techniques for
communicating data between subroutines. The first and most
straightforward technique is that each subroutine has a defined set of
working registers located in the Page Zero in which the user has left
values to be operated on by the subroutine. The registers can either
contain the values directly or can contain indirect pointers to addresses
to values which would be operated on. The following example shows the
combination of these:

Example 8.7: Call-a-move subroutine using preassigned memory
locations

Location 10 = Count
Location 11, 12 = Base from Address
Location 13, 14 = Base to Address
Main Line Routine
No. of Bytes Instruction Comment
2 LDA #COUNT - 1 Load Fixed Value for the Move
2 STA 10
g ;?:: ngADH Setup “FROM” Pointer
2 LDA #FRADL
2 STA 11
2 LDA #TOADL
2 STA 13
2 LDA #TOADH
2 STA 14
3 JSR SUBI1

Setup “TO” Pointer

23 bytes
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Subroutine Coding

No. of Bytes Label Instruction

SUBT LDY 10
LOOP LDA (11), Y
STA (13), Y
DEY
BNE LOOP
RTS

I—'M—'MMM

Total 33 bytes

As has been previously developed, the loop time is the overriding
consideration rather than setup time for a large number of executions.

It can be seen that we have used the techniques developed in previous
sections of the indirect referencing, the jump to subroutine and the return
from subroutine to perform this type of subroutine value communication.
In this operation, there was no use of the stack except for the program
counter value.

A second form of communication is the use of the stack itself as an
intermediate storage for data which is going to be communicated to the
subroutine. In order for the programmer to use the stack as an
intermediate storage, he needs instructions which allow him to put data
on the stack and to read from the stack. These instructions are known as
push and pull instructions.

8.5 PHA — PUSH ACCUMULATOR ON STACK

This instruction transfers the current value of the accumulator to the next
location on the stack, automatically decrementing the stack to point to the
next empty location.

The symbolic notation for this operation is Al . Noted should be that the
notation , means push to the stack, * means pull from the stack.

Push A instruction only affects the stack pointer register which is
decremented by 1 as a result of the operation. It affects no flags.

PHA is a single-byte instruction and its addressing mode is Implied.

The following example shows the operations which occur during Push A
instruction.
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Example 8.8: Operation of PHA, assuming stack at O1FF

Cycle Address Data External Internal
Bus Bus Operation Operation
1 0100 OP CODE Fetch Instruction Finish Previous
Operation, Increment
PCto 0101
2 0101 Next Fetch Next Interpret PHA
OP CODE OP CODE Instruction, Hold P-
and discard Counter
3 O1FF (A) Write A on Decrement Stack Pointer
Stack to O1FE
4 0101 Next Fetch Next

OP CODE OP CODE

As can be seen, the PHA takes 3 cycles and takes advantage of the fact
that the stack pointer is pointing to the correct location to write the value
of A. As a result of this operation, the stack pointer will be sitting at O1FE.
The notation (A) implies contents of A. Now that the data is on the stack,
later on in the program the programmer will call for the data to be
retrieved from the stack with a PLA instruction.

8.6 PLA — PULL ACCUMULATOR FROM STACK

This instruction adds 1 to the current value of the stack pointer and uses it
to address the stack and loads the contents of the stack into the A register.

The symbolic notation for this is AT,

The PLA instruction does not affect the carry or overflow flags. It sets N
if the bit 7 is on in accumulator A as a result of instructions, otherwise it is
reset. If accumulator A is zero as a result of the PLA, then the Z flag is set,
otherwise it is reset. The PLA instruction changes content of the
accumulator A to the contents of the memory location at stack register
plus 1 and also increments the stack register.

The PLA instruction is a single-byte instruction and the addressing mode is
Implied.

In the following example, the data stored on the stack in Example 8.8 is
transferred to the accumulator.
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Example 8.9: Operation of PLA stack from Example 8.8

Cycle Address Data External Internal
Bus Bus Operation Operation

1 0200 PLA Fetch Instruction Finish Previous Operation,
Increment PC to 0101

2 0201 Next Fetch Next Interpret Instruction, Hold

OP CODE  OP CODE and P-Counter
Discard

3 O1FE Read Stack Increment Stack Pointer to
O1FF

4 O1FF (A) Fetch A Save Stack

5 0201 Next Fetch Next M= A

OP CODE  OP CODE

When taking data off the stack, there is 1 extra cycle during which time
the current contents of the stack register are accessed but not used and
the stack pointer is incremented by 1 to allow access to the value that
was previously stored on the stack. The stack Pointer is left pointing at
this location because it is now considered to be an empty location to be
used by the stack during a subsequent operation.

8.7 USE OF PUSHES AND PULLS TO COMMUNICATE VARIABLES
BETWEEN SUBROUTINE OPERATIONS

In Example 8.10, we perform the same operation as we did in Example
8.7; only here, instead of using fixed locations to pick up the pointers, we
are going to use the stack as a communications vehicle:

Example 8.10: Call-a-move subroutine using the stack to communicate

Location 11, 12 = Base “FROM” Address
Location 13, 14 = Base “TO” Address
Main Line Routine

Bytes Instruction
2 LDA #COUNT -1
1 PHA
2 LDA # FRADL
1 PHA
2 LDA #FRADH
1 PHA
2 LDA #TOADL
1 PHA
2 LDA #TOADH
1 PHA

3 JSR SUB1
18
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Subroutine

Label Instruction Comments

SUB1 LDX 6
LOOP1 PLA
STA 10, X
DEX Move Stack to Memory
BNE LOOP1
PLA Set Up Count
TAY
LOOP2 LDA (11),Y
STA (13), Y Move Memory Location
DEY
BNE LOOP2
LDA 15
PHA
LDA 16
PHA
RTS

Restore PC to Stack

o
|—'—'M—'MM—'MM—'—'M—'M—'M Fg-
n

Total 42 Bytes

We can see from this example that using the stack as a communication
vehicle actually increases the number of bytes in the subroutine and the
total bytes overall. However, the only time one should be using
subroutines in this case is when the subroutine is fairly long and the number
of times the subroutine is used is fairly frequent. This technique does
reduce the number of bytes in the calling sequence. The calling sequence
is normally repeated once for every time the instruction is called;
therefore the use of the stack to communicate should result in a net
reduction in the number of bytes used in the total program.

Up until this time, we have been considering that the stack is at a fixed
location and that all stack references use the stack pointer. It has not been
explained how the stack pointer in the microprocessor gets loaded and

accessed. This is done through communication between the stack pointer
and index register X.

8.8 TXS — TRANSFER INDEX X TO STACK POINTER

This instruction transfers the value in the index register X to the stack
pointer.

Symbolic Notation is X = S

TXS changes only the stack pointer, making it equal to the content of the
index register X. It does not affect any of the flags.
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TXS is a single-byte instruction and its addressing mode is Implied.

Another application for TXS is the concept of passing parameters to the
subroutine by storing them immediately after the jump to subroutine
instruction.

In Example 8.11, the from and to address, plus the count of number of
values would be written right after the JSR instruction and its address.

By locating the stack in Page Zero, the address of the last byte of the
JSR can be incremented to point at the parameter bytes and then used
as an indirect pointer to move the parameter to its memory location.

The key to this approach is transferring the stack pointer to X which allows
the program to operate directly on the address while it is in the stack.

It should be noted that this approach automatically leaves the address

on the stack, positioned so that the RTS picks up the next OP CODE
address.

Example 8.11: Jump to subroutine (JSR) followed by parameters

Address Bus Data
0100 JSR
0101 ADL
0102 ADH
0103 To High
0104 To Low
0105 From High
0106 From Low
0107 Count
0108 Next OP CODE

Before concluding this discussion on subroutines and parameter passing,
one should again note the use of subroutines should be limited to those
cases where the user expects to duplicate code of significant length
several times in the program. In these cases, and only in these cases, is
subroutine call warranted rather than the normal mode of knowing the
addresses and specifying them in an instruction. In all cases where timing
is of significant interest, subroutines should also be avoided. Subroutines
add significantly to the setup and execution time of problem solution.
However, subroutines definitely have their place in microcomputer code
and there have been presented 3 alternatives for use in application
programs. The user will find a combination of the above techniques most
useful for solving his particular problem.
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8.9 TSX — TRANSFER STACK POINTER TO INDEX X

This instruction transfers the value in the stack pointer to the index register
X.

Symbolic notation is S = X.

TSX does not affect the carry or overflow flags. It sets N if bit 7 is on in
index X as a result of the instruction, otherwise it is reset. If index X is zero
as a result of the TSX, the Z flag is set, otherwise it is reset. TSX changes
the value of index X, making it equal to the content of the stack pointer.

TSX is a single-byte instruction and the addressing mode is Implied.
8.10 SAVING OF THE PROCESSOR STATUS REGISTER

During the interrupt sequences, the current contents of the processor status
register (P) are saved on the stack automatically. However, there are
times in a program where the current contents of the P register must be
saved for performing some type of other operation. A particular
example of this would be the case of a subroutine which is called
independently and which involves decimal arithmetic. It is important that
the programmer keeps track of the arithmetic mode the program is in at
all times. One way to do this is to establish the convention that the machine
will always be in binary or decimal mode, with every subroutine changing
its mode being responsible for restoring it back to the known state. This
is a superior convention to the one that is about to be described.

A more general convention would be one in which the subroutine that
wanted to change modes of operation would push P onto the stack, then
set the decimal mode to perform the subroutine and then pull P back from
the stack prior to returning from the subroutine.

Instructions which allow the user to accomplish this are as follows:

8.11  PHP — PUSH PROCESSOR STATUS ON STACK

This instruction transfers the contents of the processor status register
unchanged to the stack, as governed by the stack pointer.

Symbolic notation for this is P1.
The PHP instruction affects no registers or flags in the microprocessor.

PHP is a single-byte instruction and the addressing mode is Implied.
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8.12  PLP — PULL PROCESSOR STATUS FROM STACK

This instruction transfers the next value on the stack to the Processor Status
register, thereby changing all of the flags and setting the mode switches
to the values from the stack.

Symbolic notation is P,

The PLP instruction affects no registers in the processor other than the
status register. This instruction could affect all flags in the status register.

PLP is a single-byte instruction and the addressing mode is Implied.

8.13 SUMMARY OF THE STACK

The stack in the MCS650X family is a push-down stack implemented by
a processor register called the stack pointer which the programmer
initializes by means of a Load X immediately followed by a TXS
instruction and thereafter is controlled by the microprocessor which loads
data into memory based on an address constructed by adding the
contents of the stack pointer to a fixed address, Hex address 0100. Every
time the microprocessor loads data into memory using the stack pointer,
it automatically decrements the stack pointer, thereby leaving the stack
pointer pointing at the next open memory byte. Every time the
microprocessor accesses data from the stack, it adds 1 to the current value
of the stack pointer and reads the memory location by putting out the
address 0100 plus the stack pointer. The status register is automatically
pointing at the next memory location to which data can now be written.
The stack makes an interesting place to store interim data without the
programmer having to worry about the actual memory location in which
data will be directly stored.

There are 8 instructions which affect the stack. They are: BRK, JSR, PHA,
PHP, PLA, PLP, RTl and RTS.

BRK and RTI involve the handling of the interrupts.
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CHAPTER 9

RESET AND INTERRUPT CONSIDERATIONS

9.0 VECTORS

Before developing the concepts of how the MCS650X Microprocessors
handle interrupts and start-up, a brief definition of the concept of vector
pointers needs to be developed.

In the sections on Jumps and Branches, it was always assumed that the
program counter is changed by the microprocessor under control of the
programmer while accessing addresses which were in program sequence.
In order to get the microprocessor started and in order to properly
handle external control or interrupt, there has been developed a
different way of setting the program counter to point at a specific
location. This concept is called vectored pointers. A vector pointer consists
of a program counter high and program counter low value which, under
control of the microprocessor, is loaded in the program counter when
certain external events occur. The word vector is developed from the fact
that the microprocessor directly controls the memory location from which
a particular operation will fetch the program counter value and hence
the concept of vector.

By allowing the programmer to specify the vector address and then by
allowing the programmer to write coding that the address points to, the
microprocessor makes available to the programmer all of the control
necessary to develop a general purpose control program. The
microprocessor has fixed address in memory from which it picks up the
vectors. By this implementation, minimum hardware in the microprocessor
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is obtained. Locations FFFA through FFFF are reserved for vector pointers
for the microprocessor. Into these locations are stored respectively the
interrupt vectors or pointers for: non-maskable interrupt, reset and
interrupt request.

9.1 RESET OR RESTART

In the microprocessor, there is a state counter which controls when the
microprocessor is going to use the program counter to access memory to
pick up an instruction, then after the instruction is loaded, the
microprocessor goes through a fixed sequence of interpreting instructions
and then develops a series of operations which are based on the OP
CODE decoding.

Up fo this point, it has been assumed that the program counter was set at
some location and that all program counter changes are then directed by
the program once the program counter had been initialized.

Instructions exist for the initialization and loading of all other registers in
the microprocessor except for the initial setting of the program counter.
It is for this initial setting of the program counter to a fixed location in the
restart vector location specified by the microprocessor programmer that
the reset line in the microprocessor is primarily used.

The reset line is controlled during power on initialization and is a common
line which is connected to all devices in the microcomputer system which
have to be initialized to a known state. The initialization of most 1/O
devices is such that they are brought up in a benign state such that with
minimum coding in the microcomputer, the programmer can configure and
control the I/O in an orderly fashion.

The concept has important systems implications in systems where damage

can be done if peripheral devices came up in unknown states. Therefore,
in the MCS650X, power on or reset control operates at two levels.
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First, by holding of an external line to ground, and having this external
line connected to all the devices during power up transient conditions, the
entire microcomputer system is initialized to a known disabled state.
Second, the releases of the reset line from the ground or TTL zero
condition to a TTL one condition causes the microprocessor to be
automatically initialized, first by the internal hardware vector which
causes it to be pointed to a known program location, and secondly
through a software program which is written by the user to control the
orderly start-up of the microcomputer system.

All of the MCS650X family parts also obey a discipline that while the
reset line is low, the system is in a stop or reset state. The microprocessor
is guaranteed to be in a Read state and upon release of the reset line
from ground to positive, the microprocessor will continue to hold the line
in a Read state until it has addressed the specified vectored count
location, at which time control of the microprocessor is available to the
programmer.

NOTE: The MC6800 family also follows this convention.

9.2 START FUNCTION

While the reset line is in the low state, it can be assumed that internal
registers may be initialized to any random condition; therefore, no
conditions about the internal state of the microprocessor are assumed
other than that the microprocessor will, one cycle after the reset line goes
high, implement the following sequence:
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Example 92.1: lllustration of Start Cycle

Cycle Address Data External Internal
Bus Bus Operation Operation
1 2 2 Don’t Care Hold During Reset
2 241 2 Don’t Care First Start State
3 0100 + SP 2 Don’t Care Second Start State
4 0100 + SP-1 2 Don't Care Third Start State
5 0100 + SP-2 2 Don't Care Fourth Start State
é FFFC Start PCL Fetch First Vector
7 FFFD Start PCH Fetch Second Vector Hold PCL
8 PCH PCL First Load First OP CODE
OP CODE

The start cycle actually takes seven cycles from the time the reset line is
let go to TTL plus. On the eighth cycle, the vector fetched from the memory
location FFFC and FFFD is used to access the next instruction. The
microprocessor is now in a normal program load sequence, the location
where the vector points should be the first OP CODE which the
programmer desires to perform.

The second point that should be noted is that the microprocessor actually
accesses the stack three times during the start sequence in cycles 3, 4 and
5. This is because the start sequence is in effect a specialized form of
interrupt with the exception that the read/write line is disabled so that
no writes to stack are accomplished during any of the cycles.

9.3 PROGRAMMER CONSIDERATIONS FOR INITIALIZATION
SEQUENCES

There are two major facts to remember about initialization. One, the only
automatic operations of the microprocessor during reset are to turn on
the interrupt disable bit and to force the program counter to the vector
location specified in locations FFFC and FFFD and to load the first
instruction from that location. Therefore, the first operation in any normal
program will be to initialize the stack. This should be done by having
previously decided what the stack value should he for initial operations
and then doing a LDX immediate of this value followed by a TXS. By this
simple operation, the microprocessor is ready for any interrupt or non-
maskable interrupt operation which might occur during the rest of the
start-up sequence.
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Once this is accomplished, the two non-variable operations of the machine
are under control. The program counter is initialized and under
programmer control and the stack is initialized and under program
control. The next operations during the initialization sequences will consist
of configuring and setting up the various control functions necessary to
perform the 1/O desired for the microprocessor.

Specific discussion for considerations regarding the start-up are covered
in Section 11.

The major things which have to be considered include the current state of
the I/O device and the non-destructive operations that will allow the state
to be changed to the active state.

The initialization programs mostly consist of loading accumulator A
immediately with a bit pattern and storing it in the data control register
of an 1/O device.

Note: The interrupt disable is automatically set by the microprocessor
during the start sequence. This is to minimize the possibility of a
series of interrupts occurring during the start-up sequence
because of uncontrolled external values although it is usually
possible to control interrupts as part of the configuration.

The programmer should consider two effects. First, that the non maskable
interrupt is not blockable by this technique since it would be possible to
configure a device that was connected to a non maskable interrupt and
have to service the interrupt immediately. Secondly, the mask must be
cleared at the end of the start sequence unless the user has specific reason
to inhibit interrupts after he has done the start-up sequence. Therefore,
the next to last instruction of the start-up sequence should be CLI.

It should be noted that the start-up routine is a series of sequential

operations which should occur only during power on initialization and is
the first step in the programmed logic machine.
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Because the execution of the routine during power on occurs very seldom
in the normal operation of the machine, the coding for power on sequence
should tend to minimize the use of memory space rather than speed.

The last instruction in the start-up sequence should initialize the decimal
mode flag to the normal setting for the program.

The next instruction should be the beginning of the user's normal
programming for his device, everything preceding that being known as
“housekeeping.”

9.4 RESTART

It should be noted that the basic microprocessor control philosophy allows
for a single common reset line which initializes all devices. This line can
be used to clear the microprocessor to a known state and to reset all
peripherals to a known state; therefore, it can be used as a result of
power interruption, during the power on sequence, or as an external clear
by the user to re-initialize the system.

As discussed in the hardware manual, restart is often used as an aid to
making sure the microprocessor has been properly interconnected and
that programs have been loaded in the correct locations.

9.5 INTERRUPT CONSIDERATIONS

Up until this point, the microprocessor has to proceed under programmer
control through a variety of sequences. The only way for the programmer
to change the sequence of operations of the microprocessor was to
change the program counter location to point at new operations. The
microprocessor is in control of fetching the next instruction at the conclusion
of the current instruction. The only way that external events could control
the microprocessor, if it were not for interrupts, would be for the
programmer to periodically interrupt or stop processing data and check
to see whether or not an external event which might cause him to change
his direction has occurred. The problem with this technique is that 1/O
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events are usually asynchronous, i.e., not timed with the microprocessor
internal instructions, therefore, it would be possible for the event to occur
shortly after the programmer has stopped to look at |/O events which
would mean that the event would not be sampled until the programmer
took the time to stop his coding and sample again.

because the sampling of 1/O devices normally takes several byte counts
or cycles to accomplish, the frequent insertion of checking routines into
straight line code results in significant delays to the entire program. In
trying to use this technique, there has to be a trade-off between the fact
that the program wastes a significant amount of time checking events
which have not yet occurred versus delaying checking of an event which
has occurred and if not timely serviced the data may be lost.

In order to solve this dichotomy, the concept of interrupt is used to signal
the microprocessor that an external event has occurred and the
microprocessor should devote attention to it immediately. This technique
accomplishes processing in which the microprocessor's program is
interrupted and the event that caused the interrupt is serviced.

Transferring most of data and control to | /O devices in an interrupt driven
environment will usually result in maximum program and/or programmer
efficiency. Each event is serviced when it occurs which means there is a
minimum amount of delaying in servicing events, also a minimum amount
of coding because of elimination of the need to determine occurrence of
several events simultaneously; each interrupting event is handled as a
unique combination. It is possible to interrupt an interrupt processing
routine and, therefore, all the interrupt logic uses the stack which allows
processing of successive interrupts without any penalty other than
increasing the stack length.

A real world example of an event which should interrupt is when the user
is given a panic button indicating to the microcomputer some event has
occurred which requires total immediate attention of the microprocessor
to solving that problem.
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The action and events are as follows: The microprocessor user pushes the
panic button; the panic switch sensor causes an external device to indicate
to the microprocessor an interrupt is desired; the microprocessor checks
the status of the internal interrupt inhibit signal; if the internal inhibit is set,
then the interrupt is ignored. However, if it is reset or when it becomes
reset through some program reaction, the following set of operations

ocCcur:
Example 9.2: Interrupt Sequence
Cycle Address Data External Internal
Bus Bus Operation Operation

1 PC OP CODE  Fetch OP CODE Hold Program Counter,
Finish Previous
Operation

2 PC OP CODE Fetch OP Code Force a BRK Instruction,
Hold P-Counter

3 O1FF PCH Store PCH on Stack Decrement Stack
Pointer to O1FE

4 OTFE PCL Store PCL on Stack Decrement Stack
Pointer to O1FD

5 O1FD P Store P on Stack Decrement Stack
Pointer to O1FC

6 FFFF New PCL Fetch Vector Low Put Away Stack

7 FFFF New PCH Fetch Vector High Vector Low —
PCL and Set |

8 Vector OP CODE  Fetch Interrupt Increment PC to

PCH PCL Program PC+ 1

As can be seen in Example 9.2, the microprocessor uses the stack to save
the reentrant or recovery code and then uses the interrupt vectors FFFE
and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt
request or a non maskable interrupt request had occurred. It should be
noted that the interrupt disable is turned on at this point by the
microprocessor automatically.
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Because the interrupt disable had to be off for an interrupt request to
have been honoured , the return from interrupt which loads the processor
status from before the interrupt occurred has the effect of clearing the
interrupt disable bit. After the interrupt has been acknowledged by the
microprocessor by transferring to the proper vector location, there are a
variety of operations which the user can perform to service the interrupt;
however, all operations should end with a single instruction which
reinitializes the microprocessor back to the point at which the interrupt
occurred. This instruction is called the RTI instruction.

9.6 RTI — RETURN FROM INTERRUPT

This instruction transfers from the stack into the microprocessor the
processor status and the program counter location for the instruction which
was interrupted. By virtue of the interrupt having stored this data before
executing the instruction and the fact that the RTI reinitializes the
microprocessor to the same state as when it was interrupted, the
combination of interrupt plus RTI allows truly reentrant coding.

The symbolic notation for RTl is TP PC.

The RTI instruction reinitializes all flags to the position to the point they
were at the time the interrupt was taken and sets the program counter
back to its pre-interrupt state. It affects no other registers in the
microprocessor.

RTl is a single byte instruction and its addressing mode is Implied.

In the following example, we can see the internal operation of the RTI
which restores the microprocessor:
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Example 9.3:  Return from Interrupt

Cycle Address Data External Internal
Bus Bus Operation Operation
1 0300 RTI Fetch OP CODE Finish Previous
Operation, Increment
PC to 0301
2 0301 2 Fetch Next OP CODE Decode RTI
3 O1FC 2 Discarded Stack Increment Stack Pointer
Fetch to O1FD
4 O1FD P Fetch P Register Increment Stack Pointer
to O1FE
5 O1FE PCL Fetch PCL Increment Stack Pointer
to O1FF, Hold PCL
6 O1FF PCH Fetch PCH M—-PCL, Store Stack
Pointer
7 PCH PCL OP CODE Fetch OP CODE Increment New PC.

Note the effects of the extra cycle (3) necessary to read data from stack
which causes the RTI to take six cycles. The RTl has restored the stack,
program counter and status register to the point they were at before the
interrupt was acknowledged.

There is no automatic save of any of the other registers in the
microprocessor. Because the interrupt occurred to allow data to be
transferred using the microprocessor, the programmer must save the
various internal registers at the time the interrupt is taken and restore
them prior to returning from the interrupt. Saving of the registers is best
done on the stack as this allows as many consecutive interrupts as the
programming will allow for. Therefore, the routines which save all
registers and restore them are as follows:

Example 9.4: lllustration of Save and Restore for Interrupts
Cycle Bytes

3 1 SAVE PHA Save A
2 1 TXA Save X
3 1 PHA
2 1 TYA Save Y
3 i PHA
13 5
4 1 RESTORE PLA Restore Y
2 1 TAY
4 1 PLA Restore X
2 1 TAX
4 1 PLA Restore A
16 5
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The SAVE coding assumes that the programmer wants to save and to
restore registers A, X and Y. It should be noted that for many interrupts,
the amount of coding that has to be performed in the interrupt is fairly
small.

In this type of operation, it is usually more desirable to shorten the
interrupt processing time and not use all of the registers in the machine.
Therefore, a more normal interrupt processing routine would consist of
just saving registers A and X which means that the restore routine would
be just restore registers X and A. This has the effect of shortening the
interrupt routine by two bytes, and also shortens the restore routine by
two bytes and will cut 5 cycles out of the interrupt routine and 6 cycles
out of the restore routine.

This technique combined with automatic features of the interrupt and the
RTI allows multiple interrupts to occur with successive interrupts
interrupting the current interrupt. This is one of the advantages of the use
of the stack so that as many interrupts can interrupt other interrupts as
can be held in the stack. The stack contains six bytes for every interrupt
if all registers are saved, so 42 sequences of interrupts can be stored in
one page. However, in more practical situations, consecutive interrupts
hardly ever get more than about three deep.

The advantage of allowing an interrupt to interrupt an interrupt is that
the whole concept behind the interrupt is that asynchronous events can be
responded to as rapidly as possible; therefore, it is desirable to allow
the processing to service one interrupt to be interrupted to service the
second, as long as the first interrupt has been properly serviced.

To review how this is accomplished using the normal interrupt capability
of the MCS650X, it is important that we review the bus concept which is
inherent in the MCS6500 family and which is compatible with the M6800.

As has already been discussed, all 1/O operations on this type of
microprocessor are accomplished by reading and writing registers which
actually represent connections to physical devices or to physical pins
which connect to physical devices.
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Up until this point, this discussion has addressed itself to transferring of
data into and out of the microprocessor. However, there is a concept that
is inherent in the bus discipline that says that whenever an interrupt device
capable of generating an interrupt desires to accomplish an interrupt, it
performs two acts; first, it sets a bit, usually bit 7, in a register whose
primary purpose is fo communicate to the microprocessor the status of the
device. The interrupting device causes one of perhaps many output lines
to be brought low. These collector-or'd outputs are connected together to
the IRQ pin on the MCS650X microprocessor.

The interrupt request to the MCS650X is the IRQ pin being at a TTL zero.
In order to minimize the handshaking necessary to accomplish an interrupt,
all interrupting devices obey a rule that says that once an interrupt has
been requested by setting the bit and pulling interrupt low, the interrupt
will be held by the device until the condition that caused the interrupt has
been satisfied. This allows several devices to interrupt simultaneously and
also allows the microprocessor to ignore an interrupt until it is ready to
service it. This ignoring is done by the interrupt disable bit which can be
set on by the programmer and is initialized on by the interrupt sequence
or by the start sequence.

Once the interrupt line is low and interrupt disable is off, the
microprocessor takes an interrupt which sets on the interrupt disable. The
interrupt disable then keeps the input low line from causing more than
one interrupt until an interrupt has been serviced. There is no other
handshaking between the microprocessor and the interrupting device
other than the collector-or’d line. This means that the microprocessor must
use the normal addressing registers to determine which of several
collector-or'd devices caused the line to go low and to process the
interrupt which has been requested.
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Once the processor has found the interrupting device by means of
analyzing status bits which indicates an interrupt has been requested, the
microprocessor then clears the status by reading or writing data as
indicated by the status register.

It should be noted that a significant difference between status registers
and data registers in /O devices is that status registers are never cleared
by being read, only by being written into or by the microprocessor
transferring data from a data register which corresponds to some status
in the status register. Detailed examples of this interaction are discussed
in Chapter 11. The clearing of the status register also releases the
collector-or'd output thereby releasing the interrupt pin request.

The basic interaction between the microprocessor and interrupting device
is when interrupting device sets the status bit and brings its output RQ
line low. If its output IRQ line is connected to the microprocessor interrupt
request line, the microprocessor waits until the interrupt disable is cleared,
takes the interrupt vector, and sets the interrupt disable which inhibits
further interrupts in the IRQ line. The microprocessor determines which
interrupting device is causing an interrupt and transfers data from that
device.

Transferring of data clears the interrupt status and the IRQ pin. At this
point, the programmer could decide that he was ready to accept another
interrupt even though the data may have been read but not yet operated
on. Allowing interrupts at this point, gives the most efficient operation of
the microprocessor in most applications.

There are also times when a programmer may be working on some
coding the timing of which is so important that he cannot afford to allow
an interrupt to occur. During these times, he needs to be able to turn on
the interrupt disable. To accomplish this, the microprocessor has a set and
clear interrupt disable capability.
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9.7 SOFTWARE POLLING FOR INTERRUPT CAUSES

As was indicated above, any one of several devices are collector-or’'d to
cause an IRQ. The effect of any one of the devices or combination of
them having polled the IRQ line low is always the same. The interrupt
stores the current status of the program counter and processor on the
stack and transfers to a fixed vector address. In servicing the interrupt, it
is important to save those registers which will be used in the analysis of
the interrupt and during the interrupt processing, so the normal first steps
of the interrupt routine are to do the SAFE procedures.

The next operation is to determine which of the various potential
interrupting devices caused the interrupt. To accomplish this, the
programmer should make use of the fact that all interrupting devices
signal the interrupt by a bit in the status register. All currently
implemented 6800 and 6500 peripherals always have interrupt
indicators; either bit 7 or bit 6 in their status register. Therefore, the basic
loop that a user will use to verify the existence of an interrupt on one of
five devices is as follows:

Example 9.5: Interrupt Polling

No of Bytes Cycles
3 4 LDA Status 1
2 2 BMI FIRST
3 4 LDA Status 2
2 2 BMI SECOND
3 4 LDA Status 3
2 2 BMI THIRD
3 4 LDA Status 4
2 2 BMI FOURTH
3 4 LDA Status 5
2 2 BMI FIFTH
RES1 IMP to RESTORE
FIRST LDA DATA 1
CLI
Process 1
etc.
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In this example, the simplest case where the potential interrupts are
indicated by bit 7 being on, has been assumed. This allows advantage to
be taken of the free N-bit test by following the load of the first status
register with a branch on result minus. If the first device has an active
interrupt request, the BMI will be taken to FIRST where the data is
transferred. This automatically clears the interrupt for the first device. To
allow multiple interrupts, the load A is followed by the CLI instruction
which allows the program to accept another interrupt. As a result of the
CLl, one of two things can occur; there is not another interrupt currently
active, in which case, the microprocessor will continue to process the first
interrupt down to the point where the interrupt is complete and the first
subroutine does a jump to RESTORE, which is the routine that unsaves the
registers that were used in the process of servicing the interrupt. If another
device has an active interrupt which occurred either prior to the first
interrupt or subsequent to it but before the microprocessor has reached
the point where the CLI occurs, then the microprocessor will immediately
interrupt again following the CLI, go back and save registers as defined
before and come back into the polling loop. Therefore, multiple interrupts
are serviced in the order in which they are looked at in polling sequence.
Polling means that the program is asking each device individually whether

or not it is the one that requested an interrupt.

It should be noted that polling has the effect of giving perfect priority in
the sense that no matter which two interrupts occur before the
microprocessor gets to service one, the polling sequence always gives
priority to the highest priority device first, then the second, then the third,
etc. In light of the fact that this polling sequence requires no additional
hardware to implement other than is available in the interrupting devices
themselves, this is the least expensive form of interrupt and the one that
should be used whenever possible because of its independence from

external hardware.
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Although it would appear that the last interrupting device in a sequence
pays a significant time penalty based on the amount of instructions to be
executed before the last device is serviced, the amount of time to perform
polls is only six cycles per device and, therefore, the extra penalty that
the last device has to pay over the first device is 24 cycles. This is in
comparison to a minimum time to cause an interrupt (eight cycles), plus
store time for registers (in the range of another 8 to 13 cycles) which
means that the delay to the last devices is roughly twice what it would be

for the first device.

This timing just described represents a most interesting part of the analysis
of interrupts for a microprocessor. There is a significant amount of fixed
overhead which must be paid for the interrupt. This overhead includes the
fact that the interrupts can only occur at the end of an instruction so,
therefore, if an interrupt occurs prior to the end of an instruction, the
microprocessor delays until the end of the instruction to service it.
Therefore, in doing the worst case analysis, one has to consider the fact
that the interrupt might be occurring in the middle of a seven cycle,
read/modify /write instruction which means that the worst case time to
process the first instruction in an interrupt sequence is 14 cycles (7 cycles
plus the 7 cycles for the interrupt).

In light of the fact that saving of additional registers is often required (at
least the accumulator A must be saved), at least twice the number of
cycles will be required. Consequently the absolute minimum worse case
time for an interrupt is 17 cycles plus the time to transfer data which is
another 4 cycles. Therefore interrupt driven systems must be capable of
handling a delay of at least 20 cycles and more realistically, 20 to 50
cycles before the first interrupt is serviced. This means that devices which
are running totally interrupt driven must not require successive bytes of
data to be transferred to the microprocessor in less than 30 or 40 cycles
and on a given system, only one device is capable of operating at that
rate at one time. This limits the interrupt driven frequency of data transfer
to 40 KHz at a one megahertz clock system and 80 KHz on a two

megahertz clock system.
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An even more serious problem is the timing delay when an interrupt has
just started to be serviced. The interrupt mask is on and higher priority
interrupts are blocked from service. In this case, the delay to the service
can easily stretch out to 100 cycles before the interrupt mask is cleared.
This is one of the reasons for clearing up the interrupt mask as soon as
data is transferred. (The non-maskable interrupt which will be discussed
later is one solution to this problem.) A second is to only use interrupts for
systems that have adequate buffering and/or slower transfer rates. This
does not imply that most microprocessor applications should not be
primarily interrupt driven. The MCS650X interrupt system is designed to
be very economical and easy to apply. It should be used for almost all
control applications, other than when the throughput described is not
sufficient to handle the particular problem. It should be remembered that
at one megahertz the fast MCS650X is not really capable of handling
problems with more than 50 KHz byte throughput for a sustained period
of operation. It is also true that in most control applications, many of the
signals occur at much slower rates or are bufferable so that the response
time to a request for service is significantly longer than the 20 to 50
cycles that can normally be expected with a polling system. Because of
this, it is expected that most applications will be quite satisfied using the
polling technique described above.

9.8 FULLY VECTORED INTERRUPTS

However, there are occasions where several high speed peripherals can
be managed by the microprocessor if the user is willing to make the
investment to attain a truly vectored interrupt. There is a second level of
interrupt vectoring possible by just putting one high priority device on the
non-maskable interrupt line. However, the case when multiple inputs are
desired with both priority encoding and true vectoring, the MCS650X
when combined with appropriate hardware has the ability in the first
polling instruction to transfer control to appropriate interrupting device

service software.
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The MCS6520 contains, in its two bytes of memory, an indirect pointer to
the address of the subroutine in which resides the interrupt processing for
the devices, which the priority encoder has selected. This gives an
effective service time of approximately 25 cycles to a prioritized
interrupt and is one of the primary applications of the jump indirect

capability.

9.8.1 JMP Indirect

This instruction establishes a new value for the program counter.

It affects only the program counter in the microprocessor and affects no

flags in the status register.
JMP Indirect is a three byte instruction.
In the JMP Indirect instruction, the second and third bytes of the instruction

represent the indirect low and high bytes respectively of the incremented

with the next memory location containing ADH.

Example 9.6: lllustration of JMP Indirect
Cycle Address Data External Internal
Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous
Operation. Increment
PCto 0101
2 0101 IAL Fetch IAL Interpret Instructions
Increment PC to 0102
3 0102 IAH Fetch IAH Store IAL
4 IAH, IAL ADL Fetch ADL Add 1 to IAL
5 IAH, IAL+1 ADH Fetch ADH Store ADL
6 ADH, ADL Next Fetch Next

OP CODE OP CODE
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9.9 INTERRUPT SUMMARY

There is an interrupt request line (IR_Q) that, when low, indicates one of
the devices which are connected to the interrupt request line requires
service. At the beginning of the interrupt service routine, the user should
save, on the stack, whatever registers will be used in his interrupt
processing routine. His program then goes through a polling sequence to
determine the interrupting device by analyzing the status registers in the
order of priority of service for the 1/O devices. On finding a device which
requires service, the data for that device should be read or written as
soon as possible and the interrupt disable cleared so that the
microprocessor can interrupt again to service lower priority devices.
Devices with over 40 KHz byte transfer, etc., and mixed devices with over
20 KHz should not normally be run interrupt driven. All others should be
run interrupt driven as it minimizes the service time and programming for
interrupt |/O operations.

9.10 NON-MASKABLE INTERRUPT

As is discussed, it is often desirable to have the ability to interrupt an
interrupt with a high priority device which cannot afford to wait during
the time interrupts are disabled. For this reason, the MCS650X has a
second interrupt line, called a Non-Maskable Interrupt. The input
characteristics of this line are different than the interrupt request line
which senses it needs service when it remains low. The non-maskable input
is an edge sensitive input which means that when the collector-or'd input
transitions from high to low, the microprocessor sets an internal flag such
that at the beginning of the next instruction, no matter what the status of
the interrupt disable, the microprocessor performs the interrupt sequence
shown in Example 9.2 except that the vector pointer put out in cycle 6
and 7 is FFFA and FFFB.

This gives two effects of a non-maskable interrupt. First, no matter what
the status of the interrupt disable, the non-maskable interrupt will
interrupt at the beginning of the next instruction, therefore, the maximum
response time to the vector point is 14 cycles. Secondly, the internal logic
of the MCS650X is such that if an interrupt request and non-maskable
interrupt occur simultaneously or if the non-maskable interrupt occurs prior
to the time that the vectors are selected, the microprocessor always
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assigns highest priority to the non-maskable interrupt. Therefore, the FFFA
and FFFB vector are always taken if both interrupts are active at the time
the vector is selected. Thus the non-maskable interrupt is always a higher
priority fast response line, and can, in any given system be used to give
priority to the high speed device.

It is possible to connect multiple devices to the non-maskable interrupt line
except for the fact that the non-maskable interrupt is edge sensitive.
Therefore, the same logic that allows the IRQ to stay low until the status
has been checked and the data transferred will keep the non-maskable
interrupt line in a low state until such time as the first interrupt is serviced.
If subsequent to the first interrupt of a non-maskable interrupt line
occurring, a second device which is collector-or’d would have turned on
its status and collector-or'd output, the clearing of the first interrupt
request would not cause the line to re-initialize itself to the high state and
the microprocessor would ignore the second interrupt. Therefore, multiple
lines connected to the non-maskable interrupt must be carefully serviced.

In any case, NMI is always one free high priority vectored interrupt. By
virtue of the fact that it goes to a different vector pointer, the
microprocessor programmer can be guaranteed that in 17 cycles he can
transfer data from the interrupting device on the non-maskable interrupt
input.

The IRQ and NMI are lines which, externally to the microprocessor, control
the action to the microprocessor through an interrupt sequence. As is
mentioned during the discussion on the start command, the restart cycle is
a pseudo interrupt operation with a different vector being selected for
reset which has priority over both interrupt and non-maskable interrupt.
Non-maskable interrupt has priority over interrupt. There is also a
software technique which allows the user to simulate an interrupt with a
microprocessor command, BRK. It is primarily used for causing the
microprocessor to go to a halt condition or stop condition during program
debugging.
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9.11  BRK — BREAK COMMAND

The break command causes the microprocessor to go through an interrupt
sequence under program control. This means that the program counter of
the second byte after the BRK is automatically stored on the stack along
with the processor status at the beginning of the break instruction. The
microprocessor then transfers control to the interrupt vector.

Symbolic notation for break is PC + 24, (FFFE)—PCL (FFFF)—>PCH.

Other than changing the program counter, the break instruction changes
no values in either the registers or the flags.

The BRK is a single byte instruction and its addressing mode is Implied.

As is indicated, the most typical use for the break instruction is during
program debugging. When the user decides that the particular program
is not operating correctly, he may decide to patch in the break instruction
over some code that already exists and halt the program when it gets to
that point. In order to minimize the hardware cost of the break which is
applicable only for debugging, the microprocessor makes use of the
interrupt vector point to allow the user to trap out that a break has
occurred. In order to know whether the vector was fetched in response to
an interrupt or in response to a BRK instruction, the B flag is stored on the
stack, at stack pointer plus 1, containing a one in the break bit position,
indicating the interrupt was caused by a BRK instruction. The B bit in the
stack contains O if it was caused by a normal IRQ. Therefore, the coding
to analyze for this is as follows in Example 9.7.

Example 9.7: Break-Interrupt Processing

Cycles Bytes Check for a BRK Flag

4 1 PLA Load Status Register

3 1 PHA Restore onto Stack

2 2 AND # $ 10 Isolate B Flag

2 2 BNE BRK P Branch to Break Programming
11 6

Normal Interrupt Processing
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This coding can be inserted any place in the interrupt processing routine.
During debugging, if the user can afford the execution time, it should be
placed immediately after the save routine. If not, it can be put at the end
of the polling routine which gives a priority to the polling devices as far
as servicing the interrupts. However, it should be noted that in order not
to lose the break, the returns from all interrupts during debugging should
go through an equivalent routine.

Once the user has determined that the break is on, a second analysis and
correction must be made. It does not operate in a normal manner of
holding the program counter pointing at the next location in memory
during the BRK instruction. Because of this, the value on the stack for the
program counter is at the break instruction plus two. If the break had
been patched over an instruction, this is usually of no significant
consequence to the user. However, if it is desired to process the next byte
after the break instruction, the use of decrement memory instructions in
the stack must be used.

It is recommended that the user normally takes care of patching programs
with break by processing a full instruction prior to returning and then use
jump returns.

An interesting characteristic about the break instruction is that its OP
CODE is all zeros (0), therefore, BRK coding can be used to patch fusable
link PROMS through a break to an E-ROM routine which inserts patch
coding.

An example of using the break to patch with is shown below:

Example 9.8: Patching with a break utilizing PROMs

Old Code FC21 LDA
FC22 05
FC23 21

FC24 Next OP CODE

Patched FC21 BRK 00
Code FC22 05
FC23 21

FC24 Next OP CODE
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The interrupt vector routine points to:

Patch LDA
06
21
JMP
24
FC

This coding substitutes:
LDA 2106
for the
LDA 2105

coding at
FC21

by use of the BRK and a break processing routine.

9.12  MEMORY MAP

A series of requirements were discussed to this point for the memory
organization which can be illustrated by the following memory map:

Hex Address

0000 — OOFF RAM used for zero page and indirect memory addressing
operation.

0100 - O1FF RAM used for stack processing and for absolute addressing.

0200 — 3FFF Normally RAM.

4000 — 7FFF Normally 1/O.

8000 — FFF9 Program Storage normally ROM.

FFFA Vector low address for NMI.

FFFB Vector high address for NMI.

FFFC Vector low address for RESET.

FFFD Vector high address for RESET.

FFFE Vector low address for IRQ + BRK.

FFFF Vector high address for IRQ + BRK.

The addressing schemes for 1/O control between locations 4000 and
8000 Hex, have not been fully developed. This is described in detail in
the Hardware Manual, Chapter 2. The Zero Page addressing requires
that RAM should be located starting in location 00. If more than one RAM
page is necessary, RAM location 0100 through O1FF should be reserved
for the stack or at least a portion of parts should be reserved for the
stack with the rest of it being available to the user to use as normal RAM.
Locations from 0200 up to 4000 are normally reserved for RAM
expansion.
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In small memory configurations such as are inherent in a MCS6530 class
device, in order to minimize the addressing lines, page two (02XX) will
be normally used for input/output as opposed to using the 40XX page
which is used for devices which require significant amount of outboard
RAM, ROM and 1/0O.

Because of the fact that the MCS650X has three very important vector
points selected in highest order memory, it is usually more useful to write
programs with the memory storage located at a starting address which
allows the programmer to make sure that the last address in his ROM
contains the start and interrupt vectors. Because of these allocations, the
user finds himself working in three directions. RAM is assigned in location
0000 working up. I/O devices are started at location 4000 starting up
and ROM starts at location FFFF and works down. Although this seems like
an unusual concept, one must remember that the hardware really only
gives performance to either end of memory and, therefore, data located
in the middle has no priority one over the other. So starting at either end

is just as useful a technique as starting at one end and working up.

In order to take maximum advantage of the capability of the
microprocessor, particularly when using a symbolic assembler, working
data should be located starting in the location 0, and stack addresses
should be reserved until after analysis of the working storage
requirements have been completed. Program storage should start in high
order memory with some guess as to the amount of memory required
being taken and that being taken as a start address. However, care
should be taken to assign the three fixed vectors almost immediately at
least symbolically as they are all necessary for correct operation of the

microprocessor.
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CHAPTER 10

SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.0  DEFINITION OF SHIFT AND ROTATE

In many cases operations of the control systems must operate a bit at a
time. Data is often available only bit-serial and sometimes sequential bit
operations are the only way to solve a particular problem. In addition to
that, in order to combine bits into a field, shift and rotate instructions are
necessary. Multiply and divide routines all require the ability to move bits
relative to one another in a full multiple byte field.

The shift instruction is one that takes a register such as the accumulator
and moves all of the bits in the accumulator 1 bit to the right or 1 bit to
the left. Examples of the shift and rotate instructions in the MCS650X are
shown below:

Example 10.1: General shift and rotate

0O
Q
=
3
~

Shift Right Before B7 | B6 | B5 | B4 | B3 | B2 B1 BO

After 0 B7 | B6 | B5 | B4 | B3 | B2 | Bl

Shift Left Before B7 | B6 | B5 | B4 | B3 | B2 B1 BO
After |- B6 | B5 | B4 | B3 | B2 | Bl BO 0

Rotate Left Before B7 B6 | B5S B4 B3 B2 B1 BO

]lo] | [&]le] [ell]

After I— B6 | B5 | B4 | B3 | B2 | Bl BO C
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As you can see from our example, moving data 1 bit to the right is called
shift right. The natural consequence of the shift right is that the input bit
or high order bit in this case is set to 0. Moving the data in the register 1
bit to the left is called shift left. In this case, the O is inserted in the low
order position. These are the 2 shift capabilities that exist in the
MCS650X microprocessor.

It should be noted that in both cases, the bit that is shifted from the
register, the low order bit in shift right, and the high order bit in shift left,
is stored in the carry flag. This is to allow the programmer to test the bit
by means of the carry branches that are available and also to allow the
rotate capability to transfer bits in multiple precision shifts.

The second part of the multiple precision shift instruction is the rotate which
is shown in Example 10.1, in which the value of the carry bit becomes the
low order bit of the register, and the output bit from the shift is stored in
carry.

10.1  LSR — LOGICAL SHIFT RIGHT

This instruction shifts either the accumulator or a specified memory location
1 bit to the right, with the higher bit of the result always being set to O,
and the low bit which is shifted out of the field being stored in the carry
flag.

B7 BO
The symbolic notation for LSRis 0 —=»{ | |

The shift right instruction either affects the accumulator by shifting it right
1 or is a read/modify/write instruction which changes a specified
memory location but does not affect any internal registers. The shift right
does not affect the overflow flag. The N flag is always reset. The Z flag
is set if the result of the shift is O and reset otherwise. The carry is set
equal to bit O of the input.

LSR is a read/write/modify instruction and has the following addressing
modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute, X.
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10.2  ASL — ARITHMETIC SHIFT LEFT

The shift left instruction shifts either the accumulator or the address
memory location 1 bit to the left, with the bit O always being set to O and
the bit 7 output always being contained in the carry flag. ASL either shifts
the accumulator left 1 bit or is a read/modify/write instruction that
affects only memory.

B7

BO
The symbolic notation for ASL is <—| | | |<— 0

The instruction does not affect the overflow bit, sets N equal to the result
bit 7 (bit 6 in the input), sets Z flag if the result is equal to O, otherwise
resets Z and stores the input bit 7 in the carry flag.

ASL is a read /modify /write instruction and has the following addressing
modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X.

10.3 ROL — ROTATE LEFT

The rotate left instruction shifts either the accumulator or addressed
memory left 1 bit, with the input carry being stored in bit O and with the
input bit 7 being stored in the carry flags.

The symbolic notation for ROL is 4_|B7| |B0|<J

The ROL instruction either shifts the accumulator left 1 bit and stores the
carry in accumulator bit O or does not affect the internal registers at all.
The ROL instruction sets carry equal to the input bit 7, sets N equal to the
input bit 6, sets the Z flag if the result of the rotate is O, otherwise it resets
Z and does not affect the overflow flag at all.

ROL is a read/modify/write instruction and it has the following

addressing modes: Accumulator; Zero Page; Zero Page,X; Absolute;
Absolute, X.
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10.4 ROR — ROTATE RIGHT (Available on Microprocessors after June, 1976)

The rotate right instruction shifts either the accumulator or addressed
memory right 1 bit with bit O shifted into the carry and carry shifted into
bit 7.

B7 BO
The symbolic notation for ROR is | |

The ROR instruction either shifts the accumulator right 1 bit and stores the
carry in accumulator bit 7 or does not affect the internal registers at all.
The ROR instruction sets carry equal to input bit O, sets N equal to the
input carry and sets the Z flag if the result of the rotate is O; otherwise it
resets Z and does not affect the overflow flag at all.

ROR is a read/modify/write instruction and it has the following
addressing modes: Accumulator; Zero Page; Absolute; Zero Page,X;
Absolute, X.

10.5 ACCUMULATOR MODE ADDRESSING
As indicated, all of the shift instructions can operate on the accumulator.
This is a special addressing mode that is unique to the shift instructions

and operates with the following set of operations:

Example 10.2: Rotate accumulator left

Cycle Address Data External Internal
Bus Bus Operation Operation
1 0100 OP Code Fetch Next Finish Previous Operation;
OP CODE Increment PC to 0101
2 0101 Next Fetch Discarded Decode Current Instruction;
OP Code OP CODE Hold P-Counter
3 0101 Next Fetch Next Shift Through the Adder
OP Code OP CODE
4 0102 2 Fetch Second Store Results into A; Interpret
Byte Next OP CODE

As we can see, the accumulator instructions have the same effect as the
single byte non-stack instructions in the sense that the instruction contains
both the OP CODE and the register in which the operations are going to
be performed; therefore, in cycle 2, the microprocessor holds the
program counter and in cycle 3, fetches the same program counter
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location and starts the next instruction operation. At the same time, it is
transferring the results from the adder into the accumulator; this is
because of the look-ahead and pipelining characteristics of the
MCS650X. The accumulator shift and rotate operations take only 2 cycles
and 1 byte of memory.

10.6 READ/MODIFY/WRITE INSTRUCTIONS

The MCS650X has a series of instructions which allow the user to change
the contents of memory directly with a single instruction. These instructions
include all of the shift, rotate, increment and decrement memory
instructions. The operation of each of these instructions is the same in that
the addressing mode that is defined for the instruction is implemented the
same way as if for normal instructions. After the address has been
calculated, the effective address is used to read the memory location into
the microprocessor arithmetic unit (ALU). The ALU performs the operation
and then the same effective address is used to write the results back into
memory. The most difficult operation is the addressing mode Absolute
Indexed which is illustrated in Example 10.3 for the rotate left instruction,

ROL.

Example 10.3: Rotate memory left Absolute,X

Cycle Address Data External Internal
Bus Bus Operation Operation
1 0100 OP Code Fetch Finish Previous Operation;
OP CODE Increment PC to 0101
2 0101 ADL Fetch ADL Decode Current Instruction;
Increment PC to 0102
3 0102 ADH Fetch ADH Add ADL+X, Increment PC to
0103
4 ADH,ADL+X 2 False Read Add Carry from Previous Add
to ADH
5 ADH+C, Data Fetch Value
ADL+X
6 ADH+C, 2 Destroy Memory Perform Rotate
ADL+X Turn on Write
7 ADH+C, Shifted Store Results Set Flags
ADL+X Data
8 0103 OP CODE  Fetch Next Increment PC to 0104
OP CODE
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Cycle 4 is a wasted cycle because read/modify /write instruction should
wait until the carry had been added to the address high in order to avoid
writing a false memory location. This is the same logic that is used in the
store instruction in which the look-ahead or the short cut addressing mode
is not taken advantage of. Cycle 4 is an intermediate read, and cycle 5
is when the actual data that is going to be operated on is read.

The address lines now hold at that address for cycles 5, 6 and 7. The
microprocessor signals both itself and the outside world those operations
during which it will not recognize the ready line. It does this by pulling the
Write line. The Write line is pulled in cycle 6 because data is written into
the memory location that is going to be written into again in cycle 7 with
correct data.

Because data bits read from memory have to be modified and returned,
there is no pipelining effect other than the overlap of the adding in the
address low and index register. The 7 cycles it takes to perform read/
modify /write Absolute Indexed,X instruction is the worst case in timing for
any section of the machine except for interrupt. This unique ability to
modify memory directly is perhaps best illustrated by the coding in
Example 10.4 which is used to shift a 4-bit BCD number, which has been
accumulated in the high 4 bits of the accumulator as part of the decoding
operation, from the accumulator into a memory field. Figure 10.1 is a
flow chart of this example. Examples such as this often occur in point-of-
sale terminals and other machines in which BCD data is entered
sequentially. This example assumes that the value is keyboard entered,
through which data is entered into the accumulator from left to right but
has to be shifted into memory from right to left. The value in the field
before the shift is a 1729 which after the shift will be a 17,295.
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SetY =4
for counting
# of bits moved

v

Set X =4
to move all eight
digits, two digits
at a time

Move one bit from
accumulator into carry

>

Rotate data once
into next value

v

Decrement X
to point at next value

v

No

Yes

Decrement Y

No

Y=0

Flow Chart for Moving in a New BCD Number
FIGURE 10.1
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Example 10.4: Move a new BCD number into field

Before After
Field 00 00
00 01
17 72
29 95
Accumulator 50 00
Codin
Bytes Instruction
2 LDY 4 set up for 4 moves
2 LOOP-2 LDX 4 P
1 ASL A
3 LOOP-1 ROL Price -1, X
1 DEX shift the field 1 bit
2 BNE LOOP-1
1 DEY shifts four times
2 BNE LOOP-2
14 bytes

There are several new concepts introduced in this example; the first is the
use of index register Y as just a counter to count the number of times the
character has been bit-shifted. It is a common approach to use bit shifts,
as is implemented in the MCS650X family, to shift data into memory. The
power of being able to communicate directly in memory is shown by
shifting bits from one byte to the next byte using a single ROL indexed
instruction. This example uses a loop within a loop and it should be noted
that LOOP 1 occurs 4 times for every time LOOP 2 occurs. The internal
loop is very important in the sense that this loop executes 16 times for the
problem; therefore, its execution time should be optimized.

In addition to having the ability to shift and rotate memory, the MCS650X
has the ability to increment and decrement memory locations.
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10.7 INC — INCREMENT MEMORY BY ONE
This instruction adds 1 to the contents of the addressed memory location.

The symbolic notationis M + 1 —> M.

The increment memory instruction does not affect any internal registers
and does not affect the carry or overflow flags. If bit 7 is on as the result
of the increment, N is set, otherwise it is reset; if the increment causes the
result to become 0, the Z flag is set on, otherwise it is reset.

The addressing modes for increment are: Zero rage; Zero Page,X;
Absolute; Absolute,X.

10.8  DEC — DECREMENT MEMORY BY ONE

This instruction subtracts 1, in two's complement, from the contents of the
addressed memory location.

The symbolic notation for this instruction is M — 1 = M.

The decrement instruction does not affect any internal register in the
microprocessor. It does not affect the carry or overflow flags. If bit 7 is
on as a result of the decrement, then the N flag is set, otherwise it is reset.
If the result of the decrement is O, the Z flag is set, otherwise it is reset.

The addressing modes for decrement are: Zero Page; Zero Page,X;
Absolute; Absolute,X.

In many examples through the report, we have used the ability to
increment and decrement registers in the microprocessors. The
advantages of incrementing and decrementing in memory are that it is
possible to keep external counters or to directly influence a bit value by
means of these instructions. It is sometimes useful during 1/O instructions.

10.9 GENERAL NOTE ON READ/MODIFY/WRITE INSTRUCTIONS

The ability to read, modify and write memory is unique to MCS6500 class
microprocessors. The usefulness of the instructions is limited only by the
user’s approach to organizing memory. Even though the instructions are
fairly long in execution, they are significantly shorter than having to load
and save other registers to perform the same function. Experience in
organizing programs to take advantage of this manipulation of memory
will allow the user to fully appreciate the power of these instructions.
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CHAPTER 11

PERIPHERAL PROGRAMMING

11.0  REVIEW OF MCS6520 FOR I/O OPERATIONS

It should be noted that in the following discussions, the major difference
between the MCS6530 1/O and the main register of the MCS6520 is
that the extra bit in the control register need not be used in the MCS6530.
All registers in the MCS6530 are directly addressable.

Example 11.1: The MCS6520 Register Map

————————— - ————————— -y

r
A DATA DIRECTION B DATA DIRECTION

! P l

! I ! I

* = Base Address : (AD) 1 : (BD) 1

! I ! I

PIAD =k g L SRV a - a4
PIBD *=k 4
PIBC =4

A CONTROL (AC) B CONTROL (BC)
A SIDE B SIDE

In Example 11.1 a programming form to describe the PIA is shown. The
programming for is used in the Cross-Assembler and Resident Assembler
with the MCS650X product family. The notation * = is used to define any
location. The notation means that the assembler instruction counter is set
equal to the value following the equal sign. The expression * = * + 1
causes the assembler to recognize that there is one byte of memory
associated with the term; therefore, we can see that the definition of the
four registers PIAD, PIAC, PIBD and PIBC are consecutive memory
locations starting at some base address, with the first byte addressed as
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PIAD, the second byte addressed as PIAC, the third byte addressed as
PIBD, and the fourth byte as PIBC. This is a normal way a MCS6520
would be organized and this is the way the programming form should be
set up. The base address is picked up by an algorithm described in the
hardware manual but normally it is a value between 4004 and 4080
Hex. Each MCS6520 is given a base address which works progressively
up from 4004 Hex.

In Example 11.1 two registers are shown in dotted lines. This is because
each of the A DATA (AD) and B DATA (BD) parts of the MCS6520 are
actually two registers having the same address, one which specifies the
direction of each of the input/output paths (the Data Direction Register),
the second one which is actually the connection to the input/output paths
(the Data Register). Because of pin limitations on the MCS6520, the
microprocessor can only directly address one of the registers at a time.
Differentiation as to which register is being connected to the
microprocessor is a function of bit 2 in the respective control register (AC
and BC). If bit 2 is off, the Data Direction Register is being addressed; if

it is on, the Data Register is being addressed.

During the initialization sequence, therefore, the MCS6520 starts out with
all registers at zero. This means that the microprocessor is addressing the
Data Direction Register. The PIA initialization is done by writing the
direction of the pins into the Data Direction Register (AD, BD) and then
setting on the control flag as described below. After that, the program

will normally be dealing with the data registers.

Example 11.2: General PIA Initialization

LDA # DIRECT Initialize Direction
STA  PIAD itialize Directio
LDA # CONTR e 1

STA  PIAC Initialize Control
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Example 11.2 illustrates a general form of initialization and can be

completed for as many PIA’s as there are in the system.

11.1  MCS6520 INTERRUPT CONTROL

The MCS6520 has a basic interrupt capability which is under control of
the programmer. Almost all MCS6500 I/O devices that allow interrupts
have an interrupt control register that allows the user to disable the
interrupt. This will keep inputs which are not necessarily active from
causing spurious interrupts which must be handled by the microprocessor.
Examples of this are open tape loops or other signals which have high
impedance noise sensitive inputs except when connected to some kind of
media. In this type of application, normally the interrupt is enabled by
some physical action from the person using the device such as loading of
the cassette, pushing the power-on switch, etc. In the case of the
MCS6520, there are two interrupt causing conditions for each control

register.

Each of these interrupts concern themselves with one input pin. The Control
Register allows the programmer to decide whether or not the pin is
sensitive to positive edge signals or negative edge signals and whether

or not an interrupt shall occur when the selected transition has occurred.
It should be noted that, therefore, it is possible for a line to cause a status

bit to be set without causing an interrupt. The comprehensive |/O Program

in Section 11.5 uses this combination.
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Example 11.3: Interrupt Mode Setup

Bit 7 Status Bit: Bits 1 O Interrupt
Set on Negative Edge 00 No
Set on Negative Edge 01 Yes
Set on Positive Edge 10 No
Set on Positive Edge 11 Yes
Bit 6 Status Bit: Bits 4 3 * Interrupt
Set on Negative Edge 00 No
Set on Negative Edge 01 Yes
Set on Positive Edge 10 No
Set on Positive Edge 1 1 Yes

*If Bit 5 equals zero

The proper combination of bits are usually determined during the design
of the MCS6520 interconnection and form the constant which is loaded in
the control register. The constant that is loaded in the control register
should contain bit 2 on. For example, to allow bit 7 to be set on negative
going signals with interrupt enable and bit 6 to be set on positive signals
with interrupt disable, the control value would be Hex 15.

With bit 3 on, the pin that controls bit 6 can be set as an output pin. The
output pin is either controllable by the microprocessor directly or acts as
a handshake to reflect the status of reads and writes of the data register.
The operation of the output pins CA2, CB2 depends on how bits 5, 4, and
3 are programmed, as shown in Example 11.4.

Example 11.4: CA2, CB2 Output Control

Bit 5 on
CA2 Qutput With: Bit 4 Bit 3
Low on read or write for one cycle 0 0
Low on read or write until bit 7 is on 0 1
Always O 1 0
Always 1 1 1
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The decision as to whether or not to use the one cycle low until bit 7 comes
on is a hardware decision, depending on the device which is hooked to
the pin.

It should be of interest to the programmer to note that bit 6 controls pins
known as CA2 or CB2 which can be considered to be auxiliary outputs
which are controlled by bit 3 assuming the processor is initialized so that
bit 5 and bit 4 are ones.

Example 11.5 shows the use of controlling bit 3 using AND and OR
instructions; however, it should be noted that this technique applies for

any individual bit in the PIA data direction register also:

Example 11.5: Routine to Change CA2 or CB2 Using Bit 3 Control

Set CA2

LDA PIAC

ORA #3508

STA PIAC

Clear CA2

LDA PIAC

AND HSF7

STA PIAC

Note: $ — Direction to Assembler for Hex Notation

# - Direction to Assembler for Production Operator

By similar techniques, every pin in the microprocessors of the MCS6520
can be controlled. There are two particular notes to remember:

1. In the MCS6520, both bit 6 and bit 7 are cleared on either side
by reading of the corresponding data register if bit 6 has been
set up as an input. This means that polling sequences for |/O
instructions should only read the status registers and then read
the data registers after the status has been determined,
otherwise false clearing of the status data may occur.

2. Even though the handshake for the CB2 pin is on write of B dataq,
a read of B data must be done to clear bit 7.
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11.2  IMPLEMENTATION TRICKS FOR USE OF THE MCS6520
PERIPHERAL INTERFACE DEVICES

11.2.1 Shortcut Polling Sequences

In section 9.7, the techniques for using a LOAD A to poll for interrupts was
covered; however, the 1/O devices on the MCS6520 can either set bit 6
or bit 7 on to cause an interrupt; therefore, a different technique needs
to be used to analyze the MCS6520 to poll a series of 6520’s each one
of which could have caused the interrupt. It is for this purpose that the BIT
instruction senses both bit 6 and bit 7. Coding for a full poll of a PIA is as

shown:

Example 11.6: Polling the MCS6520

Interrupt Vector JMP STORE
LDA #CO Set up Mask for 6 and 7
BIT PIAAC Check for neither 6 or 7
BEQ NXT1
BMI SEVEN  If 7, go to save — otherwise clear

Process BIT

6 Interrupt
NXTI BIT PIABC

BEQ NXTZ

etc.

This program takes full advantage of the BIT instruction by checking for
both bit 7 and 6 clear. BMI to SEVEN just checks N is on and that N is a
higher priority. If bit 6 is one, the overflow bit will also be set, allowing
the finish of the process seven routine to test the overflow and jump back

to the process bit 6 coding.
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Bit 6 and bit 7 were sampled by the single BIT instruction. Speed was
accomplished by loading the mask for just bit 6 and 7 into the register
which allows the BEQ instruction to determine that neither of the two flags

is on.

This routine depends on the fact that in the MCS6520, if CA2 or CB2 is

an output, bit 6 is always zero.

11.2.2 Bit Organization on MCS6520’s

In the microprocessor, there is a definite positional preference for the
testing of single bits. In the MCS6520 Data Direction Register, it is
possible to select any combinations of input/output pins by the pattern
that is loaded in the Data Direction Register. A one bit corresponds to an
output and a zero bit corresponds to an input. The natural tendency would
be to use MCS6520s with all eight bits organized into a byte. There is
relatively little advantage to organizing this way unless the eight bits are
to be treated as a single byte by the program. This is often not the case,

more often the bits are a collection of switches, coils, lights, etc.

On such combinations, advantage should be taken of the fact that bit 7
is directly testable so that a more useful combination of eight pins on one
MCS6320 register would be seven outputs and a single input with the
single input on bit 7. This organization allows the programmer to load
and branch on that location without ever having to perform a bit or shift
instruction to isolate a particular bit.

A similar capability for setting a single bit involves the organization of
data with seven inputs and a single output with a single output located in
bit 0. This bit may be set or cleared by an INC or DEC instruction without
affecting the rest of the bits in the register because the input pins ignore
signals written from the microprocessor. Therefore, the more skilled
MCS6500 programmer will often mix single outputs on bit O and a single
input on bit 7 with bits of the corresponding opposite type.
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11.2.3 Use of READ/MODIFY/WRITE Instruction For Keyboard
Encoding

A rather unique use of the memory with a READ/MODIFY/WRITE
operation involves setting the data register at all zeros, then using the
three state output of the B side to sample a keyboard.

The following Figure 11.1 shows the connection for a 64 key keyboard
organized 8 x 8:

AR AN
TN

B Side BD
8 x 8 Switch Yy v v v ¥V v v v
Matrix
AD
A SIDE

Keyboard Encoding Matrix Diagram
FIGURE 11.1
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The B side is set up to act as a strobe so that each of the output lines will
have a ground on it during one scan cycle. The eight A side data inputs
are then sampled and decoded by the microprocessor giving a 64 key
keyboard which is directly translatable into code.

Figure 11.1 and Example 11.7 make use of the capability of the
microprocessor to move a bit through the MCS6520 register location. This
program also uses the compare instruction and the ability to detect a
carry during a shift.

Example 11.7: Coding for Strobing an 8 x 8 Keyboard

Output Strobe is indicated by a one in Data Director Register. Any
connection is indicated by a zero in register bit.

LDX #0 Initialize B Data Register
STX PIABD
LDA PIABC
AND #FB Initialize Control Register to
STA PIABC Address Data Direction Register
STX PIABC
SEC
LOOP ROL PIABD Shift for strobe
E[():i E&:‘; If all sampled, Exit
CMP #FF Check for no zeros
BEQ LOOP
DONE  -----eeeeeeee If any zeros then process them

A PIABD can now be used to find out just what key is
depressed.
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Set Data Register
To All Zeros
Set Control Register Initialize
To Point At For:
Data Direction Register Strobing

!

Set Up Direction Register
Equal To All Zeros —
And Set Carry

»
>

Y

Shift Left
Strobing Register (BD)

Check
For Done

Carry By Checking If
Done == Shift Has Moved
On Bit Off End Of

Register

Carry

Load Keyboard Input Register

Any Zero?
No

Yes

Then process Accumulator
for Zero Bits

Keyboard Strobe Sequence
FIGURE 11.2
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11.3 MCS6530 PROGRAMMING

Although they have separate addressing, the Data Direction and
Input/Output Registers operate the same as on the MCS6520.

Programming of the Interval Timer has some special problems. First of all,
the time is effectively located in all addresses from XXX4-XXXF. By
picking the proper address, the programmer is able to control the P scale
for the timeout. Initialization of the Interval Timer is done by a LOAD A
followed by STORE A into the timing count. The value stored in the timing
counter represents the number of states which the counter will count
through. The address used to load will determine how many additional
divisions of the basic clock cycle will be counted.

When the counter finally counts to zero, it continues to count past zero at
the one cycle clock rate in order to give the user an opportunity to sample
the Status Register, then come back and read the Mount Register to
determine how long it has been since an interrupt occurred. Servicing an
interrupt is the same for this Control Register as for any other interrupting
register. Bit 7 is set on in the Status Register to indicate that the Interval
Timer is in the interrupt state and bit 7 is reset by the reading of the
Counter.

11.3.1 Reading of the Counter Register

Because of the nature of counting past zero, the number in the Count
Register is in two’s complement form. It can be added directly to and
used to correct the next count in a sequential string of counts or for
correction for one cycle accuracy.

11.4 HOW TO ORGANIZE TO IMPLEMENT CODING
The specific details of organizing to get coding assembled is a function
of the software that is used to implement the coding. Two software

programs are currently available for the MCS650X family.

The Cross Assembler is available on various time share systems or for

batch use on the user's system. lts documentation is covered in the Cross-

167



Assembler Manual, publication number 6500-60. The Resident Assembler
is available in the Microcomputer Development Terminal, as well as for
sale in ROMs. The documentation for this is covered in the Resident
Assembler Manual, publication number 6500-65.

The major advantages of using an assembler are that the assembler takes
mnemonics and labels and calculates the fixed code. Reference to the OP
CODE tables in the appendix shows that coding in Hex is quite difficult

because there is no ordered pattern to the instruction Hex codes.

The Cross Assembler or Resident Assembler allows one to specify all
inputs and outputs in symbolic form on a documented listing. Symbolic
addressing is a technique which has the following advantages over

numerical addressing:

1. It allows the user to postpone until the last minute actual memory
allocation in a program which is being developed. In a
microprocessor that has memory-oriented features such as Zero
Page, memory management is important. It is desirable to have
as many as possible of the read/write values in the Zero Page.
However, until the coding is complete, the organization of Zero
Page may be in doubt. Values which are originally assigned in
Zero Page may not be as valuable there after some analysis of
the coding either indicates that the applications of these values
use indirect references or indexing by Y which does not allow the
program to really take advantage of Zero Page locations
whereas some other code which may not be as frequently used
might still result in a code reduction by use of Zero Page. This
allocation, if all the fields are defined symbolically, can be done

on the final assembly without any changing in the user’s codes.

2. Use of symbolic addresses for programming branches leads to
a better documented program and as one soon determines

calculation of relative branches is difficult and subject to change
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any time a coding change is made. For example, if one has
organized a program with a loop in which three or four branches
all return to the same point and then discovers a programming
error which requires a single instruction to be added between the
return point and various branches, each branch would have to be
edited and recalculated. The symbolic assembler accomplishes

this automatically on the next assembly pass.

11.4.1 Label Standards

The MCS650X assemblers have been done on a reserve word basis in
which the various mnemonics which have been described are always
considered to be OP CODE mnemonics. If any three character fields
exactly match a mnemonic then the assembler assumes that the field is an
OP CODE and proceeds to evaluate the addressing. Any other label may
be located in free form anywhere in the coding. This means that one
should organize one’s labels such that he never has a three character
label which inadvertently might be considered an OP CODE. The easiest

way to accomplish this is to always follow a pattern on labels.

Good programming practice requires that the user develop a systems
flow chart for his own basic program and individual flow charts for
subroutines before starting the coding. From the time the routine is flow
charted, it is very easy for the user to then assign a mnemonic label to
the basic subroutine.

In this text, notations like LOOP, LOOP 1, etc. are used. In an ADD, loop
would be ADLP.

The MCS650X assembler allows six spaces for labels. It is good practice
to use two characters to generally identify the subroutine, two more
characters for mnemonic purposes and then a numbering system which
allows correlation between various addresses within a LOOP within a
subroutine. By strictly numbering such that ADLP1 is different from ADLP3,

each can be addresses within the same LOOP.
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It is assumed that the PIA’s are connected in the normal manner of Status
Register Address equal to Data Register Address + 1.

The following table and flow chart defines the program implemented in
the example.

Table #1 contains the address of all of the MCS6520 Status Registers.

Table #2 contains the address of the put-away location for the respective
data.

Table #1 PIA #1
PIA #1 ADL DATA
—
o | ] > STATUS
Table #2 List
ADL Valuve 1
—_— Value 2
Value 3
ADH etc.
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Using six character labels, there are a hundred combinations of code
which could be used in a given routine or loop without the user having to
think through the rest of mnemonic notation. The use of characters plus a
numeric for all references is sound programming practice. The advantage
of using this technique allows one to use three character mnemonics
without ever interfering with the reserve word of the microprocessor OP

CODE mnemonics because they never have a numeric in the mnemonic.

11.5 COMPREHENSIVE I/O PROGRAM

Figure 11.3 demonstrates the program flow in support of the Cross-
Assembler listing (Example 11.8) of a time-sharing routine of a program
which illustrates the use of the indexed indirect to perform a search of
eight devices which have active signals for servicing. The implementation
of the eight devices is done in HCS6520's where the MCS6520 status is
set up to be a flag in bit 7 of a Control Register.
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Initialize Index to End of Table

»
>

Y

Fetch Next Status Register

Yes Kfmus

On

Decrement X by 2

No

Decrement Table 1 as Indexed

to point at Data Register

!

Fetch Data using
Table 1, Indexed

!

Store Data using
Table 2, Indexed

!

Increment Table 2 Pointer
to point at Next Address

!

Increment Table 1 to point
back at Status

!

Program Flow — Polling for Active Signal
FIGURE 11.3
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Example 11.8: Polling for Active Signal

CARD = LOC
3

4
5
[ 6]
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CODE

CARD

0002
0004
0006
0008
000A
000C
000E
0010
0012
0014
0016
0018
001A
001C
001E
0020

0022
0200
0250
02A0
02F0
0340
0390
03E0
0430

0480

I OP CODE I

CARD SERIAL NUMBER

AH SYSTEMS BENCHMARK = 5 — POLLING 8 PERIPHERALS

MEMORY LOCATION

05 40
07 40
09 40
0B 40
11 40
13 40
21 40
23 40
00 02
5002
A0 02
FO 02
40 03
9003
EO 03
3004

SET TABLES AND STORAGE AREAS

*=$02

TABLE1 .WORD PIATAC
.WORD PIA1BC
"WORD PIA2AC
"WORD PIA2BC
.WORD PIA3AC
"WORD PIA3BC
"WORD PIA4AC
.WORD PIA4BC

TABLE2 .WORD STOREI
"WORD STORE2
.WORD STORE3
.WORD STORE4
.WORD STORE5
.WORD STOREé
"WORD STORE7
.WORD STORE8

*=$200
STORE1 *=*+80
STORE2 *=*+80
STORE3
STORE4
STORES
STORE6
STORE7
STORE8 *=*+80

MAIN PROGRAM

COMMENT
INITIALIZE PC

[[ABLE OF PIA PERIPHERAL CONTROL]

POINTERS TO STORE INPUT DATA FROM PERIPHERALS

SET SPACE FOR DATA INPUT ON PAGE 2
FOR EACH DEVICE SET BUFFER 80 CHARACTERS LONG

PROGRAM LOCATION

FC02
FCO4
FCO6
FCO7
FCo8
FCOA

FCOC
FCOE
FC10
FC12
FC14
FC16

FC18
4004
4005
4006
4007
4008
4008
4009
400A
4008
400C
4010
4011

4012
4013
4014
4020
4021

4022
4023

LABEL |

D6 00
A1 00
8110
F6 10
F6 00
DO E8

PLOP2 LDA (TABLE1-2,X)
BMI DOIT

2|
BEQ PLOP1
SERVICE ROUTINE

DOIT  DEC TABLEI-2,X
LDA (TABLET-2,X)
STA (TABLE2-2,X)
INC TABLE2-2,X
INC TABLET-2,X
BNE PLOP1

ASSIGN PIA LOCATION

PIATAD
PIATAC
PIATBD
PIATBC

PIA2AD
PIA2AC
PIA2BD
PIA2BC

PIA3AD
PIA3AC
PIA3BD
PIA3BC

PIA4AD
PIA4AC
PIA4BD
PIA4BC

INITIALIZE INDEX REGISTER X WITH 16

INDIRECT ADDRESSING OF PERIPHERAL CONTROL
IF FLAG SET BRANCH AND SERVICE THE DEVICE

IF NOT SEARCH NEXT ONE

START AGAIN TO POLL FROM THE BEGINNING

SYMBOLIC ADDRESS

MOVE THE POINTER TO PIA DATA REGISTER
READ DATA IN

STORE THE DATA INTO THE BUFFER

SET BUFFER POINTER TO NEXT LOCATION

WHEN DONE START FROM THE BEGINNING AGAIN

FIRST PERIPHERAL

SECOND

THIRD

FOURTH

FIFTH

SIXTH

SEVENTH
EIGHTH

END OF PROGRAM
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APPENDIX A

INSTRUCTION LIST

ALPHABETIC BY MNEMONIC

DEFINITION OF

INSTRUCTION GROUPS

A-1
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A.l INTRODUCTION

The microprocessor instruction set is divided into three basic groups. The
first group has the greatest addressing flexibility and consists of the most
general purpose instructions such as Load, Add, Store, etc. The second
group includes the Read, Modify, Write instructions such as Shift,
Increment, Decrement and the Register X movement instructions. The third
group contains all the remaining instructions, including all stack
operations, the register Y, compares for X and Y and instructions which

do not fit naturally into Group One or Group Two.

There are eight Group One instructions, eight Group Two instructions, and

all of the 39 remaining instructions are Group Three instructions.

The three groups are obtained by organizing the OP CODE pattern to
give maximum addressing flexibility (16 addressing combinations) to
Group One, to give eight combinations to Group Two instructions and the

Group Three instructions are basically individually decoded.

A2 GROUP ONE INSTRUCTIONS

These instructions are: Add With Carry (ADC), (AND), Compare (CMP),
Exclusive Or (EOR), Load A (LDA), Or (ORA), Subtract With Carry (SBC),
and Store A (STA). Each of these instructions has a potential for 16
addressing modes. However, in the MCS6501 through MCS6505, only

eight of the available modes have been used.

Addressing modes for Group One are: Inmediate, Zero Page, Zero Page
Indexed by X, Absolute, Absolute Indexed by X, Absolute Indexed by Y,
Indexed Indirect, Indirect Indexed. The unused eight addressing modes
are to be used in future versions of the MCS650X product family to allow
addressing of additional on-chip registers, of on-chip I/O ports, and to

allow two byte word processing.



A3 GROUP TWO INSTRUCTIONS

Group Two instructions are primarily Read, Modify, Write instructions.
There are really two subcategories within the Group Two instructions. The
components of the first group are shift and rotate instructions and are:
Shift Right (LSR), Shift Left (ASL), Rotate Left (ROL), and Rotate Right
(ROR).

The second subgroup includes the Increment (INC) and Decrement (DEC)
instructions and the two index register X instructions, Load X (LDX) and
Store X (STX). These instructions would normally have eight addressing
modes available to them because of the bit pattern. However, to allow
for upward expansion, only the following addressing modes have been
defined: Zero Page, Zero Page Indexed by X, Absolute, Absolute
Indexed by X, and a special Accumulator (or Register) mode. The four
shift instructions all have register A operations; the incremented or
decremented Load X and Store X instructions also have accumulator
modes although the Increment and Decrement Accumulator has been
reserved for other purposes. Load X from A has been assigned its own
mnemonic, TAX. Also included in this group are the special functions of
Decrement X which is one of the special cases of Store X. Included also in
this group in the X decodes are the TXS and TSX instructions.

All Group One instructions have all addressing modes available to each
instruction. In the case of Group Two instructions, another addressing
mode has been added; that of the accumulator and the other special
decodes have also been implemented in this basic group. However, the
primary function of Group Two instructions is to perform some memory

operation using the appropriate index.

It should be noted for documentation purposes that the X instructions have
a special mode of addressing in which register Y is used for all indexing
operations; thus, instead of Zero Page Indexed by X, X instructions have
Zero Page Indexed by Y, and instead of having Absolute Indexed by X,
X instructions have Absolute Indexed by Y.
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A4 GROUP THREE INSTRUCTIONS

There are really two maijor classifications of Group Three instructions; the
modify Y register instructions, Load Y (LDY), Store Y (STY), Compare Y
(CPY), and Compare X (CPX), instructions actually occupy about half of
the OP CODE space for the Group Three instructions. Increment X (INX)
and Increment Y (INY) are special subsets of the Compare X and
Compare Y instructions and all of the branch instructions are in the Group

Three instructions.

Instructions in this group consist of all of the branches: BCC, BCS, BEQ,
BMI, BNE, BPL, BPC and BPS. All of the flag operations are also devoted
to one addressing mode; they are: CLC, SEC, CLD, SED, CLI, SEl and CLV.
All of the push and pull instructions and stack operation instructions are
Group Three instructions. These include: BRK, JSR, PHA, PHP, PLA and PLP.
The JMP and BIT instructions are also included in this group. There is no
common addressing mode available to members of this group. Load Y,
Store Y, BIT, Compare X and Compare Y have Zero Page and Absolute,
and all of the Y and X instructions allow Zero Page Indexed operations

and Immediate.






APPENDIX B
INSTRUCTION LIST
ALPHABETIC BY MNEMONIC
WITH OP CODES, EXECUTION CYCLES

AND MEMORY REQUIREMENTS
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THE FOLLOWING NOTATION APPLIES TO THIS SUMMARY:

A Accumulator

X, Y Index Registers

M Memory

P Processor Status Register
S Stack Pointer

v Change

_ No Change

+ Add

A Logical AND

- Subtract

Y Logical Exclusive OR

1 Transfer from Stack

1 Transfer to Stack

- Transfer to

« Transfer from

Y Logical OR

PC Program Counter

PCH Program Counter High
PCL Program Counter Low
Oper Operand

# Immediate Addressing Mode

NOTE: At the top of each table is located in parenthesis a reference number
(Ref: XX) which directs the user to that Section in the MCS6500
Microcomputer Family Programming Manual in which the instruction is

defined and discussed.
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ADC Add Memory to Accumulator with Carry ADC

Z I DV

Operation: A+ M+ C— A, C v v
(Ref: 2.2.1)

Ad;jl\roe;s;ing Assembly Language Form C8PDE Bj:e's C:‘cc?;es
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 4 4*
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), Y 71 2 5%
*Add 1 if page boundary is crossed
AND “AND” Memory with Accumulator AND
Logical AND to the accumulator Z I DV
Operation: AAM — A v -

(Ref: 2.2.4.1)

M ode ” | Asembly language Form | 3be | gy | Coos
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4%
Absolute, Y AND Oper, Y 39 3 4%
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

*Add 1 if page boundary is crossed
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ASL Shift Left One Bit (Memory or Accumulator) ASL

N Z C I DV

Operation: C‘— <0 v vy

(Ref: 10.2)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Accumulator ASL A A 1 2
Zero Page ASL Oper 06 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper OE 3 6
Absolute, X ASL Oper, X 1E 3 7
BCC Branch on Carry Clear BCC

N 2 C I DV

Operation: Branchon C =0 - - - - -

(Ref: 4.1.2.3)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Relative BCC Oper 90 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
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BCS Branch on Carry Set BCS

Operation: Branch on C = 1 .,

(Ref: 4.1.2.4)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Relative BCS Oper BO 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.
BEQ Branch on Result Zero BEQ

Operation: Branch on 2 = 1 - - - - -

(Ref: 4.1.2.5)
Addressing O°P No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Relative BEQ Oper Fo 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.
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BIT Test Bits in Memory with Accumulator BIT

Bit 6 and 7 are transferred to the Status Register.

If the result of A A M is zero then Z = 1, otherwise Z = 0. N 2 C I DV
Operation: A AM, M7 = N, M¢ = V MoV Ms
(Ref: 4.2.2.1)

Addressing Assembly Language Form oP No. No.

Mode CODE Bytes Cycles
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
BMI Branch on Result Minus BMI

Operation: Branch on N = 1 .,

(Ref: 4.1.2.1)
Addressing O°P No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Relative BMI Oper 30 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
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BNE Branch on Result Not Zero BNE
Z I D V
Operation: Branch on 2= 0 _ - -
(Ref: 4.1.2.6)
Addressing Assembly Language Form oP No. No.
Mode CODE Bytes Cycles
Relative BNE Oper Do 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BPL Branch on Result Plus BPL
z I DV
Operation: Branch on N = 0 _ -
(Ref: 4.1.2.2)
Addressing Assembly Language Form oP No. No.
Mode CODE Bytes Cycles
Relative BPL Oper 10 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.
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BRK

Force Break

BRK

N 2 C I DV
Operation: Forced Interrupt PC+2 P | - - 1 _
(Ref: 9.11)
Addressing A bly L F OoP No. No.
m n rm
Mode ssembly tanguage o CODE Bytes Cycles
Implied BRK 00 1 7
1. A BRK command cannot be masked by setting I.
BVC Branch on Overflow Clear BVC
N 2 C I DV
Operation: Branchon V =0 - - -
(Ref: 4.1.2.8)
Addressing A bly L F OoP No. No.
m n rm
Mode ssembly tanguage o CODE Bytes Cycles
Relative BVC Oper 50 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.
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BVS Branch on Overflow Set BVS

Operation: Branchon V =1 - - - - -

(Ref: 4.1.2.7)

Addressing A bly L F (o] No. No.
m n rm
Mode ssembly tanguage o CODE Bytes Cycles

Relative BVS Oper 70 2 2%

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

CLC Clear Carry Flag CLC
N Z I DV

Operation: @ - C - - e _ _ _

(Ref: 3.0.2)
Addressing OoP No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Implied CLC 18 1 2
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CLD Clear Decimal Mode CLD
N Z C I DV
Operation: @ = D - - - = -
(Ref: 3.3.2)
Addressing O°P No. No.
bly L F
Mode Assembly Language Form CODE Bytes Cycles
Implied CLD D8 1 2
CLl Clear Interrupt Disable Bit CLI
N 2 C I DV
Operation: @ — I - - - e _ _
(Ref: 3.2.2)
Addressing O°P No. No.
bly L F
Mode Assembly Language Form CODE Bytes Cycles
Implied CLl 58 1 2
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CLvV Clear Overflow Flag

Operation: @ = V _ - . _ _ o
(Ref: 3.6.1)
Addressing O°P No. No.
A bly L F
Mode ssembly tanguage Form CODE Bytes Cycles
Implied CcLv B8 1 2
CMP Compare Memory and Accumulator CmMP
N Z C I DV
Operation: A— M v v
(Ref: 4.2.1)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Immediate CMP # Oper c9 2 2
Zero Page CMP Oper C5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper CcD 3 4
Absolute, X CMP Oper, X DD 3 4%
Absolute, Y CMP Oper, Y D9 3 4%
(Indirect, X) CMP (Oper, X) Cl1 2 6
(Indirect), Y CMP (Oper), Y D1 2 5%

*Add 1 if page boundary is crossed.
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CPX Compare Memory and Index X CPX

N 2 C I DV

Operation: X — M v o
(Ref: 7.8)

M ade | Asembly Languoge Form | 3o | gnes | cyes
Immediate CPX # Oper EQ 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY Compare Memory and Index Y CPY

N Z C I DV
Operation: Y = M v o
(Ref: 7.9)

Ad:\fjseing Assembly Language Form CngE B?Se.s C';lcoI‘eS
Immediate CPY # Oper co 2 2
Zero Page CPY Oper C4 2 3
Absolute CPY Oper CcC 3 4
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DEC DEC

Decrement Memory by One

C I DV
Operationn M =1 —> M v v
(Ref: 10.8)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Zero Page DEC Oper Ccé 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7
DEX Decrement Index X by One DEX
CcC I DV
Operation: X =1 — X v v
(Ref: 7.6)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied DEX CA 1 2
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DEY Decrement Index Y by One DEY

N Z C I DV

Operation: Y =1 = Y v v o
(Ref: 7.7)

Ad;jl\t;)ecsls;ing Assembly Language Form CngE ije's C;‘j‘es
Implied DEY 88 1 2
EOR “Exclusive-OR " Memory with Accumulator EOR

N Z C I DV
Operationn AY M — A v v _
(Ref: 2.2.4.3)

Ad:\fjseing Assembly Language Form CngE B?Se.s C';lcoI‘eS
Immediate EOR # Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4%
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect), Y EOR (Oper), Y 51 2 5%

* Add 1 if page boundary is crossed.
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INC Increment Memory by One INC

Z I DV

Operationn M+ 1 > M v o
(Ref: 10.7)

M ade | Asembly Languoge Form | cSne | pnes | cyes
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INX Increment Index X by One INX

z I DV
Operation: X + 1 = X v o
(Ref: 7.4)

M ode” | Asembly language Form | St | gy | Coos

Implied INX E8 1 2
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INY

Increment Index Y by One

INY

N Z C I DV

Operation: Y + 1 = Y v v o
(Ref: 7.5)
Addressing O°P No. No
Mode Assembly Language Form CODE Bytes Cycles
Implied INY c8 1 2
JMP Jump to New Location JMP
N Z C I DV
Operation: (PC + 1) - PCL - - - - - =
(PC+2) - PCH
(Ref: 4.0.2)
(Ref: 9.8.1)
Addressing O°P No. No
Mode Assembly Language Form CODE Bytes Cycles
Absolute JMP Oper 4C 3 3
Indirect JMP (Oper) 6C 3 5
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JSR JSR

Jump to New Location Saving Return Address

Operation: PC+ 2!, (PC+ 1) » PCL -~
(PC +2) - PCH

(Ref: 8.1)

Ad;jl\t;)ecsls;ing Assembly Language Form CngE ije's C;‘j‘es
Absolute JSR Oper 20 3 6
LDA Load Accumulator with Memory LDA

N C I D
Operation: M — A v v
(Ref: 2.1.1)

M ade | Asembly Languoge Form | 3o | gues | cye
Immediate LDA # Oper A9 2 2
Zero Page LDA Oper %) 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X LDA Oper, X BD 3 4%
Absolute, Y LDA Oper, Y B9 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y B1 2 5%

* Add 1 if page boundary is crossed.
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LDX

Operation: M — X

Load Index X with Memory

LDX

N 2 C I DV
v v

(Ref: 7.0)

Ad;:/l\roej:ng Assembly Language Form C8PDE Bs:e.s C';lcoles
Immediate LDX # Oper A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE 3 4
Absolute, Y LDX Oper, Y BE 3 4%

* Add 1 when page boundary is crossed.
LDY Load Index Y with Memory LDY
N Z C I DV
Operation: M — Y v v B
(Ref: 7.1)

Ad;jl\t;)ecsls;ing Assembly Language Form CngE ije's C;‘j‘es
Immediate LDY # Oper AO 2 2
Zero Page LDY Oper A4 2 3
Zero Page, Y LDY Oper, Y B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4%

* Add 1 when page boundary is crossed.
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LSR Shift Right One Bit (Memory or Accumulator) LSR
z I DV
Operation: @ — E ua -C v L
(Ref: 10.1)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Accumulator LSR A 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X 5E 3 7
NOP No Operation NOP
z I DV
Operation: No Operation (2 cycles) B o
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied NOP EA 1 2
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ORA

Operation: AVM — A

“OR” Memory with Accumulator

ORA

N Z C I DV
v v

(Ref: 2.2.4.2)

M ade | Asembly Languoge Form | 3o | gnes | cyes
Immediate ORA # Oper 09 2 2
Zero Page ORA Oper 05 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper (5]0] 3 4
Absolute, X ORA Oper, X 1D 3 4*
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) 01 2 6
(Indirect), Y ORA (Oper), Y 11 2 5%

* Add 1 on page crossing.
PHA Push Accumulator on Stack PHA

Operation: A |

N 2 C I DV

(Ref: 8.5)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PHA 48 1 3
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PHP Push Processor Status on Stack PHP
Z I DV
Operation: P | B o
(Ref: 8.11)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PHP 08 1 3
PLA Pull Accumulator from Stack PLA
Z I DV
Operation: A T v _o_
(Ref: 8.6)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PLA 68 1 4
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PLP PLP

Pull Processor Status from Stack

N Z C I DV

Operation: P T From Stack
(Ref: 8.12)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied PLP 28 1 4
ROL Rotate One Bit Left (Memory or Accumulator) ROL
L M or A ‘ N Z C I DV
Operation: L [TES[a[2[2[]0] + [F v
(Ref: 10.3)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7
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ROR Rotate One Bit Right (Memory or Accumulator) ROR

N Z C I DV
Operation: L|7|6|5|4|3|2|1|9Q IR
(Ref: 10.4)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page, X ROR Oper, X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute, X ROR Oper, X 7E 3 7

NOTE: ROR instruction is available on MCS650X microprocessors after June, 1976.

RTI Return from Interrupt RTI

N Z C I DV
Operation: P TPC T From Stack

(Ref: 9.6)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles

Implied RTI 40 1 6
RTS Return from Subroutine RTS

Operation: PC T,PC + 1 - PC - - o o

(Ref: 8.2)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied RTS 60 1 6
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SBC Subtract Memory from Accumulator with Borrow SBC

Operation: A = M — C > A z I DV

Note: C = Borrow Y - -7
(Ref: 2.2.2)

Ad;jl\t;)ecsls;ing Assembly Language Form CngE ije's C;‘j‘es
Immediate SBC # Oper E9 2 2
Zero Page SBC Oper ES 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4%
Absolute, Y SBC Oper, Y Fo 3 4%
(Indirect, X) SBC (Oper, X) E1 2 6
(Indirect), Y SBC (Oper), Y F1 2 5%
*Add 1 when page boundary is crossed.

SEC Set Carry Flag SEC

N Z C I DV

Operation: 1 = C - - -
(Ref: 3.0.1)

M ode” | Asembly language Form | 36 | gy | Coos
Implied SEC 38 1 2
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SED Set Decimal Mode SED
z I DV
Operation: 1 - D _ 1
(Ref: 3.3.1)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied SED F8 1 2
SEI Set Interrupt Disable Status SEI
z I DV
Operation: 1 > I _ R
(Ref: 3.2.1)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied SEl 78 1 2
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STA Store Accumulator in Memory STA

N Z C I DV

Operation: A > M o
(Ref: 2.1.2)

M ade | Assembly Languoge Form | cSoe | gues | cyes
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 5
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6
STX Store Index X in Memory STX

N Z C I DV
Operation: X = M - - - - - o
(Ref: 7.2)

Ad:\fjseing Assembly Language Form CngE B?Se.s C';lv.:OI‘eS
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2 4
Absolute STX Oper 8E 3 4
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STY Store Index Y in Memory STY
z I DV
Operation: Y = M
(Ref: 7.3)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8C 3 4
TAX Transfer Accumulator to Index X TAX
Z I DV
Operation: A > X v -
(Ref: 7.11)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TAX AA 1 2
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TAY Transfer Accumulator to Index Y TAY
N Z C I DV
Operation: A —> Y v v -
(Ref: 7.13)
Addressing O°P No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TAY A8 1 2
TYA Transfer Index Y to Accumulator TYA
N Z C I DV
Operation: Y = A v v -
(Ref: 7.14)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TYA 98 1 2
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TSX Transfer Stack Pointer to Index X TSX
Z I DV
Operation: S = X v -
(Ref: 8.9)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TSX BA 1 2
TXA Transfer Index X to Accumulator TXA
Z I DV
Operation: X = A v -
(Ref: 7.12)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied TXA 8A 1 2
TXS Transfer Index X to Stack Pointer TXS
z I DV
Operation: X = S _ - -
(Ref: 8.8)
Addressing OoP No. No.
Mode Assembly Language Form CODE Bytes Cycles
Implied XS 9A 1 2
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APPENDIX C

INSTRUCTION ADDRESSING

MODES AND

RELATED EXECUTION TIMES
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APPENDIX D

OPERATION CODE INSTRUCTION ADDRESSING

HEXADECIMAL SEQUENCE

D-1



00 — BRK

01 — ORA — (Indirect, X)
02 — Future Expansion
03 — Future Expansion
04 — Future Expansion
05 — ORA — Zero Page
06 — ASL — Zero Page
07 — Future Expansion
08 — PHP

09 — ORA — Immediate
OA — ASL — Accumulator
OB — Future Expansion
0C — Future Expansion
OD — ORA — Absolute
OE — ASL — Absolute

OF — Future Expansion
10 — BPL

11 — ORA — (Indirect), Y
12 — Future Expansion
13 — Future Expansion
14 — Future Expansion
15 — ORA - Zero Page, X
16 — ASL — Zero Page, X
17 — Future Expansion
18 — CLC

19 — ORA — Absolute, Y
1A — Future Expansion
1B — Future Expansion
1C — Future Expansion
1D — ORA — Absolute, X
1E — ASL — Absolute, X

1F — Future Expansion

20 - JSR

21 — AND - (Indirect, X)
22 — Future Expansion
23 — Future Expansion
24 — BIT — Zero Page
25 — AND - Zero Page
26 — ROL — Zero Page
27 — Future Expansion
28 — PLP

29 — AND — Immediate
2A — ROL — Accumulator
2B — Future Expansion
2C - BIT — Absolute

2D — AND — Absolute
2E — ROL — Absolute

2F — Future Expansion
30 — BMI

31 — AND — (Indirect), Y
32 — Future Expansion
33 — Future Expansion
34 — Future Expansion
35 — AND - Zero Page, X
36 — ROL — Zero Page, X
37 — Future Expansion
38 - SEC

39 — AND — Absolute, Y
3A — Future Expansion
3B — Future Expansion
3C — Future Expansion
3D — AND — Absolute, X
3E — ROL — Absolute, X

3F — Future Expansion



40 — RTI

41 — EOR — (Indirect, X)
42 — Future Expansion
43 — Future Expansion
44 — Future Expansion
45 —EOR — Zero Page
46 — LSR — Zero Page
47 — Future Expansion
48 — PHA

49 — EOR — Immediate
4A — LSR — Accumulator
4B — Future Expansion
4C — JMP — Absolute
4D — EOR - Absolute
4E — LSR — Absolute

4F — Future Expansion
50 - BVC

51 —EOR — (Indirect), Y
52 — Future Expansion
53 — Future Expansion
54 — Future Expansion
55 —EOR — Zero Page, X
56 — LSR — Zero Page, X
57 — Future Expansion
58 - Cll

59 — EOR — Absolute, Y
5A — Future Expansion
5B — Future Expansion
5C — Future Expansion
5D — EOR - Absolute, X
5E — LSR — Absolute, X

5F — Future Expansion

60 —RTS

61 — ADC — (Indirect, X)
62 — Future Expansion
63 — Future Expansion
64 — Future Expansion
65 — ADC — Zero Page
66 — ROR — Zero Page
67 — Future Expansion
68 — PLA

69 — ADC — Immediate
6A — ROR — Accumulator
6B — Future Expansion
6C — JMP — Indirect

6D — ADC — Absolute
6E — ROR — Absolute

6F — Future Expansion
70 — BVS

71 = ADC — (Indirect), Y
72 — Future Expansion
73 — Future Expansion
74 — Future Expansion
75 — ADC — Zero Page, X
76 — ROR — Zero Page, X
77 — Future Expansion
78 — SEl

79 — ADC — Absolute, Y
7 A — Future Expansion
7B — Future Expansion
7C — Future Expansion
7D — ADC — Absolute, X
7E — ROR — Absolute, X

7F — Future Expansion
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80 — Future Expansion
81 — STA — (Indirect, X)
82 — Future Expansion
83 — Future Expansion
84 — STY — Zero Page
85 — STA — Zero Page
86 — STX — Zero Page
87 — Future Expansion
88 — DEY

89 — Future Expansion
8A — TXA

8B — Future Expansion
8C — STY — Absolute
8D — STA — Absolute
8E — STX — Absolute

8F — Future Expansion
90 — BCC

91 — STA — (Indirect), Y
92 — Future Expansion

93 — Future Expansion

94 — STY — Zero Page, X
95 — STA — Zero Page, X
96 — STX — Zero Page, Y

97 — Future Expansion
98 - TYA

99 — STA — Absolute, Y
9A — TXS

9B — Future Expansion
9C — Future Expansion
9D — STA — Absolute, X
9E — Future Expansion

9F — Future Expansion

AO — LDY — Immediate
Al — LDA — (Indirect, X)
A2 — LDX — Immediate
A3 — Future Expansion
A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 — Future Expansion
A8 — TAY

A9 — LDA — Immediate
AA — TAX

AB — Future Expansion
AC — LDY — Absolute
AD — LDA — Absolute
AE — LDX — Absolute
AF — Future Expansion
BO — BCS

B1 — LDA — (Indirect), Y
B2 — Future Expansion
B3 — Future Expansion
B4 — LDY — Zero Page, X
B5 — LDA — Zero Page, X
B6 — LDX — Zero Page, Y
B7 — Future Expansion
B8 — CLV

B9 — LDA — Absolute, Y
BA — TSX

BB — Future Expansion
BC — LDY — Absolute, X
BD — LDA — Absolute, X
BE — LDX — Absolute, Y

BF — Future Expansion



CO — CPY — Immediate
C1 — CMP — (Indirect, X)
C2 — Future Expansion
C3 — Future Expansion
C4 — CPY — Zero Page
C5 — CMP — Zero Page
C6 — DEC - Zero Page
C7 — Future Expansion
C8 —INY

C9 — CMP — Immediate
CA - DEX

CB — Future Expansion
CC — CPY — Absolute
CD — CMP — Absolute
CE — DEC — Absolute

CF — Future Expansion
DO — BNE

D1 — CMP — (Indirect), Y
D2 — Future Expansion
D3 — Future Expansion
D4 — Future Expansion
D5 — CMP — Zero Page, X
D6 — DEC — Zero Page, X
D7 — Future Expansion
D8 — CLD

D9 — CMP — Absolute, Y
DA — Future Expansion
DB — Future Expansion
DC — Future Expansion
DD — CMP — Absolute, X
DE — DEC — Absolute, X

DF — Future Expansion

EQ — CPX — Immediate
E1 — SBC — (Indirect, X)
E2 — Future Expansion
E3 — Future Expansion
E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — INC - Zero Page
E7 — Future Expansion
E8 — INX

E9 — SBC — Immediate
EA — NOP

EB — Future Expansion
EC — CPX — Absolute
ED — SBC — Absolute
EE — INC — Absolute

EF — Future Expansion
FO — BEQ

F1 — SBC — (Indirect), Y
F2 — Future Expansion
F3 — Future Expansion
F4 — Future Expansion
F5 — SBC — Zero Page, X
F6 — INC — Zero Page, X
F7 — Future Expansion
F8 — SED

F? — SBC — Absolute, Y
FA — Future Expansion
FB — Future Expansion
FC — Future Expansion
FD — SBC — Absolute, X
FE — INC — Absolute, X

FF — Future Expansion
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This appendix is to serve the user in providing a reference for the
MCS650X addressing modes. Each mode of address is shown with a
symbolic illustration of the bus state at each cycle during the instruction
fetch and execution. The example number as found in the text is provided
for reference purposes.

E.1 IMPLIED ADDRESSING

Example 5.3: lllustration of implied addressing
Clock
Cycle  Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC + 1 PC + 1 New Ignore New
OP CODE OP CODE;
Decode Old
OP CODE
3 PC+ 1 PC + 2 New Fetch New
OP CODE OP CODE;
Execute Old
OP CODE
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E2 IMMEDIATE ADDRESSING

Example 5.4: lllustration of immediate addressing
Clock
Cycle  Address Bus Program Counter Data Bus Comments
1 PC PC +1 OP CODE Fetch OP CODE
2 PC+1 PC+ 2 DATA Fetch DATA,
Decode OP CODE
3 PC+ 2 PC+ 3 New Fetch New
OP CODE OP CODE;
Execute Old
OP CODE
E.3 ABSOLUTE ADDRESSING
Example 5.5: lllustration of absolute addressing
Clock
Cycle  Address Bus Program Counter Data Bus Comments
1 PC PC + 1 OP CODE Fetch OP CODE
2 PC+1 PC+ 2 ADL Fetch ADL,
Decode OP CODE
3 PC+2 PC+ 3 ADH Fetch ADH
Hold ADL
4 ADH, ADL PC+ 3 DATA Fetch DATA
5 PC+ 3 PC + 4 New Fetch New
OP CODE OP CODE,
Execute Old
OP CODE

E-3



E4 ZERO PAGE ADDRESSING

Example 5.6: |lllustration of zero page addressing
Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC + 1 OP CODE Fetch OP CODE
2 PC + 1 PC+ 2 ADL Fetch ADL,
Decode OP CODE
3 00, ADL PC + 2 DATA Fetch DATA
4 PC + 2 PC+ 3 New Fetch New
OP CODE  OP CODE,
Execute Old
OP CODE

E.5 RELATIVE ADDRESSING — (Branch Positive, no crossing of page
boundaries)

Example 5.8: |lllustration of relative addressing branch positive taken,
no crossing of page boundaries

External Internal
Cycle Address Bus Data Bus Operation Operation
1 0100 OP CODE Fetch Finish Previous Operation,
OP CODE Increment Program
Counter to 0101
2 0101 +50 Fetch Interpret Instruction,
Offset Increment Program
Counter to 0102
3 0102 Next Fetch Next Check Flags, Add
OP CODE OP CODE Relative to PCL, Increment
Program Counter to
0103
4 0152 Next Fetch Next Transfer Results to

OP CODE OP CODE PCL, Increment Program
Counter to 0153
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E6 ABSOLUTE INDEXED ADDRESSING - (with pages crossing)
Step 5 is deleted and the data in step 4 is valid when no page
crossing occurs

Example 6.7: Absolute Indexed; with Page Crossing
Address Data External Internal

Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous
Operation Increment
PCto 101
2 0101 BAL Fetch BAL Interpret Instruction
Increment PC to 102
3 0102 BAH Fetch BAH Add BAL + Index
Increment PC to 103
4 BAH, BAL+X DATA Fetch DATA Add BAH + Carry
(ignore) (Data is ignored)
5 BAH+1, DATA Fetch DATA
BAL+X
6 0103 Next OP  Fetch Next Finish Operations
CODE OP CODE
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E7 ZERO PAGE INDEXED ADDRESSING

Example 6.8: lllustration of Zero Page Indexing
Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Finish Previous
Operation,
0101 -» PC
2 0101 BAL Fetch Base Interpret Instruction,
Address Low 0102 —» PC
(BAL)
3 00,BAL DATA Fetch Add: BAL + X
(Dis- Discarded
carded) DATA
4 00,BAL+X DATA Fetch DATA
Address
5 0102 Next OP  Fetch Next Finish Operation
CODE OP CODE
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E.8

Example 6.10:

INDEXED INDIRECT ADDRESSING

lllustration of Indexed Indirect Addressing

Cycle

N oo o0 »©

Address
Bus
0100

0101

00,BAL

00,BAL+X
00,BAL+X+1
ADH, ADL
0102

Data
Bus
OP CODE

BAL

Data
(Dis-
carded)

ADL
ADH
DATA

Next OP
CODE

External

Operation
Fetch OP CODE

Fetch BAL

Fetch
Discarded
Data

Fetch ADL
Fetch ADH
Fetch DATA

Fetch Next OP
CODE

E-7

Internal

Operation
Finish Previous

Operation,
0101 —» PC

Interpret Instruction,

0102 - PC
Add BAL + X

Add 1 to BAL + X
Hold ADH

Finish Operation
0103 = PC



E.9

Example 6.12:

INDIRECT INDEXED ADDRESSING (with page crossing)

Step 6 is deleted and the data in step 5 is valid when no page
crossing occurs

Indirect Indexed Addressing (with Page Crossing)

Cycle

Address
Bus
0100

0101

00,IAL
00,lAL+1
BAH,BAL+Y

BAH+1
BAL+Y

0102

Data
Bus
OP CODE

IAL

BAL
BAH

DATA (Dis-
carded)

DATA

Next OP
CODE

External

Operation
Fetch OP CODE

Fetch IAL

Fetch BAL
Fetch BAH

Fetch DATA
(Discarded)

Fetch DATA

Fetch Next OP
CODE

E-8

Internal

Operation
Finish Previous

Operation,
0101 —» PC

Interpret Instruction,
0102 - PC

Add 1 to IAL
Add BAL +Y
Add 1 to BAH

Finish Operation
0103 = PC
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APPENDIX G

DISCUSSION — INDIRECT ADDRESSING
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The MCS650X microprocessors have a special form of addressing known
as Indirect. The writeup on Indirect addressing describes the basic
operation of Indirect.

It is the intent of this discussion to acquaint the user with some of the uses
and applications of Indirect addressing.

The Indirect address is really an address that would have been coded in
line as in the case of Absolute except for the fact that the address is not
known at the time the user writes the program. As has been indicated
several times in the basic body of the documentation, it is significantly
more efficient with the organization of the MCS650X to assign addresses
and implement them if the addressing structure is known. However, that
is not always possible to do. For instance, in order to minimize the coding
of a subroutine or general purpose set of coding, it is often desirable to
work with a range of addressing that is not possible to cover in a normal
index, or in the case of subroutine where it is necessary for the addresses
to be variable depending on which part of the whole program called the
address.

It is probably this discussion which best amplifies the need for calculated
addresses. It should be fairly obvious to the user that a general purpose
subroutine cannot contain the address of the operations. Therefore,
instead of having the instruction LDA followed by the value that the
programmer wants to load, in a subroutine it may be desirable to do a
Load A from a calculated or specified address.

The use of the Indirect Addressing Mode is to give the user a location in
Page Zero in which can be put the calculated address. Then the subroutine
instruction can call this calculated address using the form Load A from an
address pointed to by the next byte in program sequence. The word
“indirect” technically comes from the fact that instead of taking the
address which is immediately following the instruction, the next value in
program sequence is a pointer to the address.
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The indirect pointer will be referred to from now on as IAL, because it is
a Zero Page address and, therefore, is a low order byte. The indirect
instructions are written in the form “Load A” followed by IAL.

IAL points to an address which had been previously stored into Page Zero.
This gives the user the flexibility of addressing anywhere in memory with
a calculated address. However, the real value of indirect is not in just
having Indirect but having the ability to have Indirect modified. This is the
reason for which indirect indexed instruction is implemented rather than
straight indirect. An example of the indirect indexed in subroutining is
covered in Section 6.5, But it should be noted that the indirect indexed
instruction should be used whenever the user does not know the exact
address at time of compilation. Although there may be other interesting
and esoteric uses of the indirect index instruction, this is the most common
one.

The second form of indirect is very powerful for certain types of
applications. Chapter 11 shows the use of tables which have pointers and
the advantage of running down one table of pointers until a match is
found and then using the same index to address a second table to
perform an operation. This is the classical stack processor type of
architecture but it requires a special discipline at the time a program is
originally defined. Both the indirects require a concept of memory
management that is not obvious to the novice programmer.

The concept of indexed indirect is that memory has to be viewed as a
series of tables, in which access to one set of tables is accomplished by
indexing through a list of pointers. One set of tables might be searched
to perform some type of testing or operation. Then the same index is then
used to process another set of pointers. This concept is only applicable to
operations in which a variety of inputs are being serviced. A classical
application is when several remote devices are being managed by the
same control program. An example might be having three teletypes tied
on to a device, each teletype is being manually controlled and can be
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under control of the user program. In this type of message handling
environment, the control program for the teletypes does nothing more
than collect strings of data from the input device and then performs
operations on the string upon seeing a control signal, usually a carriage
return in this case of the teletype. Because any one of the teletypes can
be causing any one of the series of operations, this program does not
lend itself well to the concept of absolute addressing. In fact, most of the
subroutines which deal with the individual processing should be written
address independent. This normally allows the addition of more devices
without paying any penalty in terms of programming. Therefore, this is a
subroutine or nonabsolute type of operation in which the indirect indexed
would not apply because each of the various operations use a function
of position. In other words, one can assign a series of tables that point at
the teletype itself; another set that points at an outgoing message stream
and another set that points to a series of tables which keep the status of
the device. Each of these pointers is considered to be an individual
address at the beginning of a string. Each string is a variable length. The
teletype strings may consist of a three character message followed by a
character return or a 40 character message followed by a character
return. In the MCS650X, this system will be implemented by means of
developing a series of indirect pointers. Each teletype will have an
indirect pointer. Its |/O port has another indirect pointer that points at the
put-away string, another one that points at the teletype message output
string, another one that points at its status table. If all of the teletypes
work this way, it can be seen that the coding to put data into the input
message table is the same for all the teletypes and is totally independent
of the teletype in which data is being stored.

The index register X serves as a control for the tables so that if all tables
were sequentially organized, X would point at the proper value for each
operation. A sample operation might be: read teletype three, transfer
the data to teletype three input register, update teletype three counter,
check to see that teletype three is still active, and decide whether or not
to return to signal teletype three back. The coding to perform each of
these operations would be exactly the same as coding for teletype two,
if the tables were organized such that X was an index register for the

pointers.
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This is the type of string manipulation application for which indexed
indirect was designed and only when a program can be organized for
this technique is the indirect used to its maximum potential. The
advantages for organizing for this type of approach when the problem
requires string manipulation is significant; the comprehensive 1/O
program is roughly one half the memory and one fourth the execution
time of several other microprocessors which do not have this indexed

indirect feature.
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The number 1789 is assumed by most people to mean one thousand,
seven hundred eighty-nine, or 1 x 103+ 7 x 102+ 8 x 10" + 9 x 100,

However, until the number base is defined, it might mean:
1x163+7x162+8x 16"+ 9 x 169
which is hexadecimal and the form used in the microprocessor.

In order to distinguish between numbers on different bases,
mathematicians usually write 178%10 or just 1789 for base 10, or
decimal, and 178916 for base 16 for hexadecimal. Because very few
computers or |/O devices allow subscripting, all hexadecimal numbers
are preceded by a $ notation. Then 1789 means base 10 and $1789
means base 16. Why hexadecimal?2 This is a convenient way of

representing 2 digits in 8 bits.

The MCS650X is a byte-oriented microprocessor which means most

operations have 8-bit operations.

There are 2 ways to look at 8 bits. The first is as 8 individual bits in which
00001000 means that bit 3 (bit 7 to O representation) is on and all other

bits are off or as an 8-bit binary number in which case the value is:

O0x27+0x26+0x25+0x24+1x23+
0x22+0x21 +0x20=28or $08.

For logic analysis purposes, each bit is unique, but for arithmetic purposes,

the 8 bits are treated as a binary number.



Binary Arithmetic Rules:

——0o0
++++

—0o—-0
o

o——0

with a carry
Carry occurs when the resulting number is too long for the base.

In decimal: 8+4=2+10
In hexadecimal, $8 + $4 = $C (see hexadecimal details)

so that 8 + 4 has a carry in base 10 but not in base 16.
Using these rules to add 8 + 2 in binary gives the following:
00001000 8 1 x 23

00000100 +2 1 x 2!
00001010 10 1Tx28+1x2!

Therefore, any number from O to 255 may be represented in 8 bits, and
binary addition performed using the basic binary add equation:

Rj :(AjZBj\_/Cj—l)

where, as defined previously, ¥ is notation for Exclusive-Or.

In most applications, it is also necessary to subtract. Subtract operations
either require a different hardware implementation or a new way of
representing numbers. A combination of this is to implement a simple
inverter in each bit. This would make:

00001100 12
11110011 -12

However, when subtracting 12 from 12, the result should also be O.
00001100 +12

11110011 =12
11111111 0]

However, if a carry is added to the complemented number:

1 Carry
00001100 12
11110011 =12
00000000 = 0]

If, instead of representing —12 as the complement of 12, it is represented

as the complement plus carry, the following is obtained:
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11110011 12

1= Carry
11110100 = =12
00001100 +12
00000000 = 0]

This representation is called two's complement and represents the way
that negative numbers are kept in the microcomputer. Below are
examples of negative numbers represented in two's complement form.

-0 = 00000000
-1=11111111
-2=11111110
-3=11111101
-4=11111100
-5=11111011
-6=11111010
-7 =11111001
-8=11111000

-9=11110111

Hexadecimal is the representation of lowing table shows the advantages
of Hex:

Hexadecimal Binary Decimal
0 0000 00
1 0001 01
2 0010 02
3 0011 03
4 0100 04
5 0101 05
6 0110 06
7 0111 07
8 1000 08
9 1001 09
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
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Because 16 is a multiple of 2, hexadecimal is a convenient shorthand for
representation of 4 binary digits or bits. The rules on arithmetic also hold.

0100 1111 4F
+ 01100010 +62
1011 0001 B1

To take advantage of this shorthand, all addresses in this manual are
shown in hexadecimal notation. It should be noted that the reader should
learn to operate in Hex as soon as possible. Continual translation back to
decimal is both time consuming and error prone. Working in Hex and
binary will quickly force learning of hexadecimal manipulation and the
familiarity with working with this convenient representation.

Although many microcomputer applications can successfully be
accomplished with binary operations, some applications are best
performed in decimal. Although the use of 1 decimal character per byte
would be a legitimate way to solve this problem, this is an inefficient use
of the capability of the 8-bit byte.

The microprocessor allows the use of packed BCD representation. This
representation is, in 4-bit form:

0= 0000
1= 0001
2= 0010
3= 0011
4 = 0100
5= 0101
6= 0110
7= 0111
8 = 1000
9= 1001

In BCD, the number 79 is represented:

Binary BCD Hex
01111001 = 79 = 79



The microprocessor automatically takes this into account and corrects for
the fact that

Decimal BCD Hex

79 = 01111001 79 =01111001
+ 12= 00010010 12 =00010010

91 = 10010001 88 = 10001011

The only difference between Hex and BCD representation is that the
microprocessor automatically adjusts for the fact that BCD does not allow
for Hex values A — F during add and subtract operations.

The offset which follows a branch instruction is in signed two's complement
form which means that:

$+50 = +80 = 01010000
and $-50 =-80 = 10110000
Proof = 00000000

The sign for this operation is in bit 7 where a 0 equals positive and a 1
equals negative.

This bit is correct for the two's complement representation but also flags
the microprocessor whether to carry or borrow from the address high

byte.

The following 4 examples represent the combinations of offsets which
might occur (all notations are in hexadecimal):

Example H.4.1: Forward reference, no page crossing

0105 BNE
0106 +55
0107 Next OP CODE

To calculate next instruction if the branch is taken

Offset +55 01010101
Address Low
For next
OP CODE o7 00000111
5C 01011100

With no carry giving 015C as the result.
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Example H.4.2: Backward reference, no page crossing

O15A BNE
015B =55

015C Next OP CODE

To calculate if branch is taken,

Offset -55=AB=10101011
+ Address Low for

Next OP CODE +5C=5C=01011100

07 07 00000111

The carry is expected because of the negative offset and is ignored, thus
giving 0107 as the result.

Example H.4.3: Backward reference if page boundary crossed

0105 BNE
0106 =55

0107 Next OP CODE

To calculate if branch is taken, first calculate a low byte

Offset
+ Address Low for
Next OP CODE

-55=AB=10101011

+07 =07 = 00000111
B2 =B2=10110010

There is no carry from a negative offset; therefore, a carry must be
made:

-1

==1T=FF=11111111
+ Address High =01 =01 = 00000001
00 =00 = 00000000

This gives O0B2 as a result.

Example H.4.4: Forward reference across Page boundary

OOBO BNE
0O0B1 +55

00B2 Next OP CODE

To calculate next instruction if branch is taken,
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Offset 55=01010101
+ Address Low for

Next OP CODE B2 =10110010
07 = 00000111
with carry on positive number.
+1 1 = 00000001
+ Address High 00 = 00000000
1 = 00000001

which gives 0107.
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MCS650X

MOS TECHNOLOGY, INC.

Valley Forge Corporate Center
950 Rittenhouse Road
Norristown, Pa. 19401

INSTRUCTION

SET SUMMARY
(6501 Thru 6506)

PROCESSOR PROGRAMMING MODEL

7 0
| A |
7 0
| Y |
| x |
15 7 0
PCH | PCL |
8 7 0
L] s |
7 0
[N[V] Tefofi]z]c]
TN
TN
SN
L

ACCUMULATOR A
INDEX REGISTER Y
INDEX REGISTER X
PROGRAM COUNTER “pC”
STACK POINTER “s”

PROCESSOR STATUS REG “P”

CARRY 1 = TRUE

ZERO 1 = RESULT ZERO
IRQ DISABLE 1 = DISABLE
DECIMAL MODE 1 = TRUE

BRK COMMAND

OVERFLOW 1 = TRUE
NEGATIVE 1 = NEG
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