


 

 

Publication Number 6500-50A 

 
 
 
 
 
 

MCS6500 

 

MICROCOMPUTER FAMILY 

 

PROGRAMMING MANUAL 

 

 

 

JANUARY 1976 
 
 
The information in this manual has been reviewed and is believed to be entirely reliable. However, 
no responsibility is assumed for inaccuracies. The material in this manual is for informational purposes 
only and is subject to change without notice. 

 
 

Second Edition 
 

Reproduced – 2022 
This Revision: R220803-01 

 
 

 
 
 
 
 

MOS TECHNOLOGY, INC. 

950 Rittenhouse Road 
Norristown, PA. 19401 

 

          



 

ii 

TABLE OF CONTENTS 

 
CHAPTER 1 INTRODUCTORY REMARKS 

1.0 Manual Introduction ...................................................................................... 1 

1.1 Microprocessor Architecture ....................................................................... 2 

 

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT 

2.0 The Data Bus .................................................................................................. 3 

2.1 The Accumulator ............................................................................................ 4 

2.1.1 LDA – Load Accumulator With Memory ........................................ 4 

2.1.2 STA – Store Accumulator In Memory .............................................. 5 

2.2  The Arithmetic Unit ........................................................................................ 6 

2.2.1 ADC – Add Memory To Accumulator With Carry ....................... 7 

2.2.1.0  Multiple Precision Addition .......................................................... 8 

2.2.1.1 Signed Arithmetic ........................................................................ 10 

2.2.1.2 Decimal Addition ......................................................................... 13 

2.2.1.3 Add Summary............................................................................... 14 

2.2.2      SBC – Subtract  Memory From Accumulator With Borrow ................... 14 

2.2.2.0 Multiple Precision Subtraction ................................................... 16 

2.2.2.1 Signed Arithmetic ........................................................................ 18 

2.2.2.2 Decimal Subtract.......................................................................... 19 

2.2.3 Carry And Overflow During Arithmetic Operations ................. 20 

2.2.4 Logical Operands ............................................................................. 20 

2.2.4.1 AND – “AND” Memory With Accumulator ............................. 20 

2.2.4.2 ORA – “OR” Memory With Accumulator................................ 21 

2.2.4.3 EOR – “Exclusive Or”  Memory With Accumulator .............. 21 

 

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER 

3.0 Carry Flag (C) ............................................................................................. 24 

3.0.1 SEC – Set Carry Flag ...................................................................... 24 

3.0.2 CLC – Clear Carry Flag .................................................................. 25 

3.1 Zero Flag (Z) ................................................................................................ 25 

3.2 Interrupt Disable (I)..................................................................................... 25 

3.2.1 SEI – Set Interrupt Disable .............................................................. 26 

3.2.2 CLI – Clear Interrupt Disable ......................................................... 26 

3.3 Decimal Mode Flag (D) ............................................................................. 26 

3.3.1 SED – Set Decimal Mode ................................................................ 26 

3.3.2 CLD – Clear Decimal Mode ........................................................... 27 

3.4 Break Command (B) ................................................................................... 27 



 

iii 

3.5 Expansion Bit ................................................................................................ 27 

3.6 Overflow (V) ................................................................................................ 27 

3.6.1 CLV – Clear Overflow Flag ........................................................... 28 

3.6.2 Determination Of Overflow ........................................................... 28 

3. 7 Negative Flag (N) ...................................................................................... 29 

3.8 Flag Summary .............................................................................................. 30 

 

CHAPTER 4 TEST BRANCH AND JUMP INSTRUCTIONS 

4.0 Concepts Of Program Sequence ............................................................. 31 

4.0.1 Use Of Program Counter To Fetch An Instruction ...................... 33 

4.0.2 JMP – Jump To New Location ........................................................ 36 

4.1 Branching ...................................................................................................... 37 

4.1.1 Basic Concept Of Relative Addressing ........................................ 38 

4.1.2 Branch Instructions ............................................................................. 40 

4.1.2.1 BMI – Branch On Result Minus................................................... 40 

4.1.2.2 BPL – Branch On Result Plus ...................................................... 40 

4.1.2.3 BCC – Branch On Carry Clear ................................................. 40 

4.1.2.4 BCS – Branch On Carry Set ...................................................... 40 

4.1.2.5 BEQ – Branch On Result Zero ................................................... 41 

4.1.2.6 BNE – Branch On Result Not Zero ............................................ 41 

4.1.2.7 BVS – Branch On Overflow Set ............................................... 41 

4.1.2.8 BMC – Branch On Overflow Clear .......................................... 41 

4.1.3 Branch Summary ............................................................................... 42 

4.1.4 Solution To Branch Out Of Range ................................................. 42 

4.2 Test Instructions ............................................................................................ 45 

4.2.1 CMP – Compare Memory And Accumulator............................... 45 

4.2.2 Bit Testing ........................................................................................... 47 

4.2.2.1 BIT – Test Bits In Memory With Accumulator ......................... 47 

 

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES 

5.0 Addressing Techniques ............................................................................... 50 

5.1 Concepts Of Pipelining And Program Sequence ................................. 52 

5.2 Memory Utilization ..................................................................................... 56 

5.2.1 I/O Control ........................................................................................ 56 

5.2.2 Memory Allocation ........................................................................... 57 

5.3 Implied Addressing ..................................................................................... 57 

5.4 Immediate Addressing ............................................................................... 59 

5.5 Absolute Addressing .................................................................................. 59 

5.6 Zero Page Addressing ............................................................................... 61 

5.7 Relative Addressing ................................................................................... 63 

 



 

iv 

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS 
6.0 General Concept Of Indexing ................................................................. 69 
6.1 Absolute Indexed ........................................................................................ 79 
6.2 Zero Page Indexed .................................................................................... 81 
6.3 Indirect Addressing ..................................................................................... 83 
6.4 Indexed Indirect Addressing .................................................................... 85 
6.5 Indirect Indexed Addressing .................................................................... 87 
6.6 Indirect Absolute ......................................................................................... 92 
6.7 Application Of Indexes ............................................................................. 92 
 
CHAPTER 7 INDEX REGISTER INSTRUCTIONS 
7.0 LDX – Load Index Register X From Memory......................................... 96 
7.1 LDY – Load Index Register Y From Memory......................................... 96 
7.2 STX – Store Index Register X In Memory .............................................. 97 
7.3 STY – Store Index Register Y In Memory .............................................. 97 
7.4 INX – Increment Index Register X By One ............................................ 97 
7.5 INY – Increment Index Register Y By One ............................................ 97 
7.6 DEX – Decrement Index Register X By One .......................................... 98 
7.7 DEY – Decrement Index Register Y By One .......................................... 98 
7.8 CPX – Compare Index Register X To Memory ..................................... 99 
7.9 CPY – Compare Index Register Y To Memory ..................................... 99 
7.10 Transfers Between The Index Registers And  Accumulator........................ 100 
7.11 TAX – Transfer Accumulator To Index X ............................................. 100 
7.12 TXA – Transfer Index X To Accumulator ............................................. 100 
7.13 TAY – Transfer Accumulator To Index Y ............................................. 101 
7.14 TYA – Transfer Index Y To Accumulator ............................................. 101 
7.15 Summary Of Index Register Applications And  Manipulations ................. 102 
 
CHAPTER 8 STACK PROCESSING 
8.0 Introduction To Stack And To Push Down Stack  Concept ............... 103 
8.1 JSR – Jump To Subroutine ...................................................................... 106 
8.2 RTS – Return From Subroutine ............................................................... 108 
8.3 Implementation Of Stack In MCS6501 Through  MCS6505 .................... 112 
8.3.1 Summary Of Stack Implementation ........................................... 115 
8.4 Use Of The Stack By The Programmer ............................................... 116 
8.5 PHA – Push Accumulator On Stack ....................................................... 117 
8.6 PLA – Pull Accumulator From Stack ...................................................... 118 
8.7 Use Of Pushes And Pulls To Communicate Variables Between 
 Subroutine Operations............................................................................ 119 
8.8 TXS – Transfer Index X To Stack Pointer ............................................ 120 
8.9 TSX – Transfer Stack Pointer To Index X ............................................ 122 
8.10 Saving Of The Processor Status Register............................................ 122 
8.11 PHP – Push Processor Status On Stack ................................................ 122 
8.12 PLP – Pull Processor Status From Stack ............................................... 123 
8.13 Summary Of The Stack ........................................................................... 123 



 

v 

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS 
9.0  Vectors ....................................................................................................... 124 
9.1 Reset Or Restart ....................................................................................... 125 
9.2 Start Function ............................................................................................ 126 
9.3 Programmer Considerations For Initialization  Sequences .............. 127 
9.4 Restart ........................................................................................................ 129 
9.5 Interrupt Considerations ......................................................................... 129 
9.6 RTI – Return From Interrupt .................................................................... 132 
9.7 Software Polling For Interrupt Causes ................................................ 137 
9.8 Fully Vectored Interrupts ........................................................................ 140 
9.8.1 JMP Indirect .................................................................................... 141 
9.9 Interrupt Summary ................................................................................... 142 
9.10 Non-Maskable Interrupt ......................................................................... 142 
9.11 BRK – Break Command .......................................................................... 144 
9.12 Memory Map ............................................................................................ 146 
 
CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS 
10.0 Definition Of Shift And Rotate .............................................................. 148 
10.1 LSR – Logical Shift Right ......................................................................... 149 
10.2 ASL – Arithmetic Shift Left ..................................................................... 150 
10.3 ROL – Rotate Left .................................................................................... 150 
10.4 ROR – Rotate Right ................................................................................. 151 
10.5 Accumulator Mode Addressing ............................................................. 151 
10.6 Read/Modify/Write Instructions .......................................................... 152 
10.7 INC – Increment Memory By One ........................................................ 156 
10.8 DEC – Decrement Memory By One ..................................................... 156 
10.9 General Note On Read/Modify/Write Instructions ........................ 156 
 
CHAPTER 11 PERIPHERAL PROGRAMMING 
11.0 Review Of MCS6520 For I/O Operations ........................................ 157 
11.1 MCS6520 Interrupt Control ................................................................... 159 
11.2 Implementation Tricks For Use Of The MCS6520  Peripheral 
 Interface Devices ..................................................................................... 162 
11.2.1  Shortcut Polling Sequences .......................................................... 162 
11.2.2 Bit Organization On MCS6520’s ............................................... 163 
11.2.3 Use Of Read/Modify/Write Instruction For Keyboard  
 Encoding .......................................................................................... 164 
11.3 MCS6530 Programming ........................................................................ 167 
11.3.1 Reading Of The Counter Register .............................................. 167 
11.4 How To Organize To Implement Coding ............................................ 167 
11.4.1 Label Standards ............................................................................ 169 
11.5 Comprehensive I/O Program ................................................................ 171 

 
  



 

vi 

APPENDICES 
 
 

A. Instruction List, Alphabetic by Mnemonic, Definition 
 of Instruction Groups ..............................................................................   A-1 
 
 MCS6501 – MCS6505 Microprocessor Instruction Set –  
 Alphabetic Sequence .............................................................................   A-2 
 
 A.1 Introductions .............................................................................   A-3 
 A.2 Group One Instructions ..........................................................   A-3 
 A.3 Group Two Instructions ...........................................................   A-4 
 A.4 Group Three Instructions ........................................................   A-5 
 
B. Instruction List, Alphabetic by Mnemonic, with OP CODES, 
 Execution Cycles and Memory Requirements .....................................   B-1 
 
C. Instruction Addressing Modes and Related Execution Times ...........   C-1 
 
D. Operation Code Instruction Listing Hexadecimal Sequence ...........   D-1 
 
E. Summary of Addressing Modes 
 
 E.1 Implied Addressing ..................................................................   E-2 
 E.2 Immediate Addressing ............................................................   E-3 
 E.3 Absolute Addressing ...............................................................   E-3 
 E.4 Zero Page Addressing ............................................................   E-4 
 E.5 Relative Addressing ................................................................   E-4 
 E.6 Absolute Indexed Addressing ...............................................   E-5 
 E.7 Zero Page Indexed Addressing ............................................   E-6 
 E.8 Indexed Indirect Addressing ..................................................   E-7 
 E.9 Indirect Indexed Addressing ..................................................   E-8 
 
F. MCS650X Programming Model ............................................................   F-1 
 
G. Discussion – Indirect Addressing ...........................................................   G-1 
 
H. Review of Binary and Binary Coded Decimal Arithmetic ................   H-1 
 
 
  



 

vii 

LIST OF EXAMPLES 
 
 

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT 

2.1 Add 2 Numbers with Carry; No Carry Generation .............................. 7 

2.2 Add 2 Numbers with Carry; Carry Generation ..................................... 8 

2.3 Adding Two 16-Bit Numbers ...................................................................... 9 

2.4 Add Two 16-Bit Numbers, No Carry from Low Order Add ............... 9 

2.5 Add Two 16-Bit Numbers, with Carry from Low Order Add ........... 10 

2.6 Add 2 Positive Numbers with No Overflow .......................................... 11 

2.7 Add 2 Positive Numbers with Overflow ................................................ 12 

2.8 Add Positive and Negative Number with Positive Result ................... 12 

2.9 Add Positive and Negative Number with Negative Result ............... 12 

2.10 Add 2 Negative Numbers without Overflow ....................................... 12 

2.11 Add 2 Negative Numbers with Overflow ............................................. 13 

2.12 Decimal Addition......................................................................................... 13 

2.13 Subtract 2 Numbers with Borrow; Positive Result ................................ 15 

2.14 Subtract 2 Numbers with Borrow; Negative Result ............................. 16 

2.15 Subtracting Two 16-Bit Numbers ............................................................ 16 

2.16 Subtracting in Double Precision Format; Positive Result ..................... 17 

2.17 Subtracting in Double Precision Format; Negative Result .................. 18 

2.18 Decimal Subtraction ................................................................................... 19 

2.19 Clearing a Bit with “AND” ........................................................................ 21 

2.20 Setting a Bit with “OR” .............................................................................. 21 

2.21 Complementing a Byte with “EOR” ......................................................... 22 

 

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS 

4.1 Accessing Instructions with the P-Counter Value ................................... 33 

4.2 Accessing Data Addressing with P-Counter Value .............................. 34 

4.3 Use of JMP Instruction ................................................................................ 36 

4.4 Illustration of “Branch on Carry Set” ...................................................... 38 

4.5 Sequencing Two Branch Instructions ........................................................ 39 

4.6 Use of JMP to Branch Out of Range....................................................... 43 

4.7 Using the CMP Instruction .......................................................................... 46 

4.8 Sample Program using the BIT Test ........................................................ 48 

 



 

viii 

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES 

5.1 Using Absolute Addressing ....................................................................... 51 

5.2 Demonstration of “Pipelining” Effect ...................................................... 54 

5.3 Illustration of Implied Addressing ............................................................ 58 

5.4 Illustration of Immeditate Addressing ..................................................... 59 

5.5 Illustration of Absolute Addressing ......................................................... 60 

5.6 Illustration of Zero Page Addressing ...................................................... 62 

5.7 Illustration of Relative Addressing; Branch not Taken ........................ 63 

5.8 Illustration of Relative Addressing; Branch Positive Taken, No 
 Crossing of Page Boundaries ................................................................... 64 

5.9 Illustration of Relative Addressing; Branch Negative Taken, Crossing 
 of Page Boundaries .................................................................................... 65 

 

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS 

6.1 Moving Five Bytes of Data with Straight Line Code ........................... 70 

6.2 Moving Five Bytes of Data with Loop .................................................... 72 

6.3 Coded Detail of Moving Fields with Loop ............................................. 73 

6.4 Moving Five Bytes of Data with Index Register ................................... 76 

6.5 Moving Five Bytes of Data by Decrementing the Index Register .... 77 

6.6 Absolute Indexed; with No Page Crossing ........................................... 79 

6.7 Absolute Indexed; with Page Crossing .................................................. 80 

6.8 Illustration of Zero Page Indexing .......................................................... 82 

6.9 Demonstrating the Wrap-Around ........................................................... 83 

6.10 Illustration of Indexed Indirect Addressing ........................................... 86 

6.11 Indirect Indexed Addressing (No Page Crossing)................................ 88 

6.12 Indirect Indexed Addressing (with Page Crossing).............................. 89 

6.13 Absolute Indexed Addressing – Sample Program .............................. 90 

6.14 Indexed Indirect Addressing – Sample Program ................................ 90 

6.15 Move N Bytes (N < 256) .......................................................................... 94 

6.16 Move N Bytes (N > 256) ....................................................................... 945 

 

CHAPTER 8 STACK POINTING 

 8.1 Basic Stack Map for 3-Deep JMP to Subroutine .............................. 104 

 8.2 Basic Stack Operation ............................................................................ 105 

 8.3 Illustration of JSR Instruction .................................................................. 106 

 8.4 Illustration of RTS Instruction .................................................................. 109 

 8.5 Memory Map for RTS Instruction .......................................................... 111 

 8.6 Expansion of RTS Memory Map ........................................................... 111 

 8.7 Call-a-Move Subroutine Using Preassigned Memory Locations .... 116 

 8.8 Operation of PHA, Assuming Stack at 01FF ...................................... 118 

 8.9 Operation of PLA Stack from Example 8.8 ....................................... 119 

 8.10 Call-a-Move Subroutine Using the Stack to Communicate ............. 119 

 8.11 Jump to Subroutine (JSR) Followed by Parameters ......................... 121 



 

ix 

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS 

 9.1 Illustration of Start Cycle........................................................................ 127 

 9.2 Interrupt Sequence .................................................................................. 131 

 9.3 Return from Interrupt ............................................................................... 133 

 9.4 Illustration of Save and Restore for Interrupts .................................. 133 

 9.5 Interrupt Polling ........................................................................................ 137 

 9.6 Illustration of JMP Indirect ..................................................................... 141 

 9.7 Break-Interrupt Processing ..................................................................... 144 

 9.8 Patching with a Break Utilizing PROMs .............................................. 145 

 

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS 

 10.1 General Shift and Rotate ...................................................................... 148 

 10.2 Rotate Accumulator Left ......................................................................... 151 

 10.3 Rotate Memory Left Absolute,X ............................................................ 152 

 10.4 Move a New BCD Number into Field .................................................. 155 

 

CHAPTER 11 PERIPHERAL PROGRAMMING 

 11.1 The MCS6520 Register Map ................................................................ 157 

 11.2 General PIA Initialization ....................................................................... 158 

 11.3 Interrupt Mode Setup .............................................................................. 160 

 11.4 CA2; CB2 Output Control ...................................................................... 160 

 11.5 Routine to Change CB1 or CB2 Using Bit 3 Control ......................... 161 

 11.6 Polling the MCS6520 .............................................................................. 162 

 11.7 Coding for Strobing and 8 x 8 Keyboard ........................................ 165 

 11.8 Polling for Active Signal ......................................................................... 173 

 

 
  



 

x 

LIST OF FIGURES 

 

 

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT 

2.1 Partial Block Diagram of the MCS650X ................................................. 3 

2.2 Partial Block Diagram Including Arithmetic Logic Unit of MCS650X ....... 6 

2.3 Byte Orientation with Sign Position ......................................................... 11 

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER 

3.1 Partial Block Diagram of MCS650X Including P-Register ................. 23 

3.2 Processor Status Register, “P” .................................................................. 24 

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS 

4.1 Partial Block Diagram of MCS650X Including Program 

 Counter and Internal Address Bus ........................................................... 31 

4.2 Use of Conditional Test.............................................................................. 37 

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES 

5.1 Address Bus and Relation to Memory Field .......................................... 53 

5.2 Example of Timing – MCS650X Family ................................................. 54 

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS 

6.1 Moving Five Bytes of Data with Loop .................................................... 72 

6.2 Moving Five Bytes of Data with Counter ............................................... 75 

6.3 Partial Block Diagram of MCS650X Including Index Register ......... 78 

6.4 Indirect Addressing – Pictorial Drawing ................................................ 84 

6.5 Indexed Indirect Addressing .................................................................... 85 

6.6 Indirect Indexed Addressing .................................................................... 87 

CHAPTER 8 STACK PROCESSING 

8.1 Partial Block Diagram of MCS650X Including Stack Pointer, S .... 113 

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS 

10.1 Flow Chart for Moving in a New BCD Number................................. 154 

CHAPTER 11 PERIPHERAL PROGRAMMING 

11.1 Keyboard Encoding Matrix Program .................................................. 164 

11.2 Keyboard Strobe Sequence .................................................................. 166 

11.3 Program Flow-Polling for Active Signal .............................................. 172 

 

 



 

1 

CHAPTER 1 
 
 

INTRODUCTORY REMARKS 
 
 
 

1.0 MANUAL INTRODUCTION 
 
Welcome to the MCS650X product family. This manual is designed to 

work in conjunction with the hardware Manual which describes the basic 

hardware considerations when using the MOS Technology, Inc. 

microcomputer family. 

 

Before reading this manual, it is suggested that the reader acquaint 

himself with the hardware Manual in order to understand the components 

available in this system, how these components are interconnected, and 

their basic architecture. Developed in this manual is the concept of 

microprocessor internal architecture and how it is used, with attention 

given to input/output considerations. Familiarity with the hardware will 

facilitate easier understanding of these important concepts. 

 

In order to best serve the total customer base, this manual is written in 

two levels. The first is a very basic introduction to the MCS650X family, 

and the second level is for the user who has to refer to the manual on 

more than an occasional basis and who wants to rapidly scan and find 

specific sections. For the user who is quite familiar with programming and 

the MCS650X instruction set, the appendices are the best reference in the 

sense that all the data which is discussed in detail in the manual is 

summarized in a series of tables for convenience. 

 

It is recommended that the user who is an experienced programmer and 

familiar with microprocessors still take the time to read through the 

manual in detail. Some of the architectural concepts are different from 

those found in second generation machines and this manual instructs the 

user how to optimize the utilization of the microprocessor while providing 

an introduction of its basic concepts. 
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Criticism of this manual is welcomed at all times. Of particular interest are 

cases where one could not, by use of the index and appendix, rapidly 

find the answer to a question which developed in the course of designing 

a microprocessor system. Welcomed are any comments which will 

enhance the content and format of this manual in future editions or 

addendums. 

 

1.1 MICROPROCESSOR ARCHITECTURE 

 

The MCS6501, MCS6502, MCS6503, MCS650X, and HCS6503 are all 

8-bit microprocessors. That means that 8 bits of data are transferred or 

operated upon during each instruction cycle or operation cycle. 

 

All devices in the MCS650X family operate on data 8 bits at a time, 

although some of the operations will look like serial or 16-bit wide 

operations. In a future section, discussed will be the use of sequential 

operations on an 8-bit basis and how one can accomplish 16-bit effective 

operands and addressing. 

 

The computer industry, for some time, has been treating 8-bit 

combinations of data by a term known as a “byte.” In many large 

computers which operate simultaneously on multiple bytes of data, the 

number of bytes which are transferred and operated on by the machine 

in parallel are called a “word.” Because these microprocessors are 8-bit 

microprocessors, the words and bytes are of equal length. Therefore, for 

convenience through the discussion of the basic 8-bit processors, “byte” 

and “word” will be used synonymously although in some of the expanded 

versions there will exist a 16-bit word composed of two 8-bit bytes. 
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CHAPTER 2 

 
 

THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT 
 
 

2.0 THE DATA BUS 
 
 
Although most of the following discussion will consider how one operates 

with a general purpose register called the accumulator, it must be 

understood that data has to transfer between the accumulator and 

outside sources by means of passing through the microprocessor to 8 lines 

called the data bus. The outside sources include the program which 

controls the microprocessor, the memory which will be used as interim 

storage for internal registers when they are to be used in a current 

operation, and the actual communications to the world through 

input/output ports. Later in this document performance of transfers to and 

from each of these devices will be discussed. However, at present, 

discussion will center on the microprocessor itself. 

 

 
Partial Block Diagram of MCS650X 

FIGURE 2.1 
 

The only operation of the data bus is to transfer data between memory 

and the processor's internal registers such as the accumulator. Figure 2.1 

displays the basic communication between the accumulator, A, and the 

memory, M, through the use of 8 bi-directional data lines called the data 

bus. 
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2.1 THE ACCUMULATOR 
 
The accumulator is a register in which data is kept on which operations 
are performed. All operations between memory locations must be 
communicated through the accumulator or one of the auxiliary index 
registers. The accumulator is used as a temporary storage in moving data 
from one memory location to another. Therefore, the first use for the 
accumulator (A) is just in transferring data from memory to the 
accumulator or from the accumulator to memory. One can bring data into 
the accumulator, perform operations such as AND/OR on it, test the results 
of those operations, set new bits into it, or transfer it back out to the 
outside world. It serves as an interim storage for a series of operations 
such as adding 2 values together; where one of them is loaded into the 
accumulator, the second one added to it, and the results stored in the 
accumulator. The accumulator really acts as two functions: 1) It is one of 
the primary storage points for the machine; 2) It is the point at which 
intermediate results are normally stored. 
 

2.1.1 LDA – Load Accumulator with Memory 

 
When instruction LDA is executed by the microprocessor, data is 
transferred from memory to the accumulator and stored in the 
accumulator. 
 
Rather than continuing to give a word picture of the operation, introduced 
will be the symbolic representation M → A, where the arrow means 
“transfer to.” Therefore the LDA instruction symbolic representation is 
read, “memory transferred to the accumulator.” 
 
LDA affects the contents of the accumulator, does not affect the carry or 
overflow flags; sets the zero flag if the accumulator is zero as a result of 
the LDA, otherwise resets the zero flag; sets the negative flag if bit 7 of 
the accumulator is a 1, otherwise resets the negative flag. 
 
Although yet to be developed is the concept of addressing modes, for 
reference purpose, LDA is a “Group One” instruction and has all of the 
major addressing modes of the machine available to it as stated in 
Appendix A. These addressing modes include Immediate; Absolute; Zero 
Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed Indirect; and 
Indirect Indexed. 
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2.1.2 STA – Store Accumulator in Memory 

 

  

This instruction transfers the contents of the accumulator to memory. 

  

The symbolic representation for this instruction is A → M. This instruction 

affects none of the flags in the processor status register and does not 

affect the accumulator. 

 

It is a “Group One” instruction and has the following addressing modes 

available to it: Absolute; Zero Page; Absolute,X; Absolute,Y; Zero 

Page,X; Indexed Indirect; and Indirect Indexed. 
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2.2 THE ARITHMETIC UNIT 
 
One of the functions to be expected from any computer is the ability to 

compute or perform arithmetic operations. Even in a simple control 

problem, one often finds it useful to add 2 numbers in order to determine 

that a value has been reached, or subtract 2 numbers to calculate a new 

value which must be obtained. In addition, many problems involve some 

rudimentary form of decimal or binary arithmetic; certainly many 

applications of the microprocessor will involve both. The MCS650X has 

an 8-bit arithmetic unit which interfaces to the accumulator as shown in 

Figure 2.2. 

 

 
Partial Block Diagram including Arithmetic Logic Unit of MCS650X 

FIGURE 2.2 
 
 
 
 
 
 

The arithmetic unit is composed of several major parts. The most important 

of these is the circuitry necessary to perform a two’s complement add of 

8-bit parallel values and generate an 8 parallel bit binary result plus a 

carry. A review of binary and binary coded decimal (BCD) arithmetic is 

presented in Appendix H. However, a quick review of the concept of 

“carry” is in order. The largest range than can be represented in an 8-

bit number is 256 with values ranging between 0 and 255. If we add 

any 2 numbers which result in a sum which is greater than 255 we 

represent the result with a ninth bit plus the 8 bits of the excess over 255. 

The ninth bit is called “carry.” 
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2.2.1 ADC – Add Memory to Accumulator with Carry 
 
This instruction adds the value of memory and carry from the previous 
operation to the value of the accumulator and stores the result in the 
accumulator. 
 

The symbolic representation for this instruction is: A + M + C → A 
 
This instruction affects the accumulator; sets the carry flag when the sum 
of a binary add exceeds 255 or when the sum of a decimal add exceeds 
99, otherwise carry is reset. The overflow flag is set when the sign or bit 
7 is changed due to the result exceeding +127 or –128, otherwise 
overflow is reset. The negative flag is set if the accumulator result contains 
bit 7 on, otherwise the negative flag is reset. The zero flag is set if the 
accumulator result is 0, otherwise the zero flag is reset. 
 
It is a “Group One” instruction and has the following addressing modes: 
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; 
Indexed Indirect; and Indirect Indexed. 
 
The ninth bit of the result is stored in the carry flag and the remaining 8 
bits reside in the accumulator. The carry flag can be thought of as a flag 
bit which is remote from the accumulator itself but which is directly 
affected by accumulator operations as though it were a ninth bit in the 
accumulator. The primary reason for not viewing the carry bit as merely 
a ninth bit in the accumulator is that one has program control over its state 
by being able to set (to “1”) or clear (to “0”) the bit and, of course, it is 
not part of the 8-bit accumulator in data transfer operations. Examples 
employing the Add with Carry operation follow. 
 
Example 2.1:  Add 2 numbers with carry; no carry generation 
 
  0000 1101   13 = (A)* 
  1101 0011 211 = (M)* 
                    1        1 = CARRY 
 Carry =  0       1110    0001    225 = (A) 
 
*(A) and (M) refer to the “contents” of the accumulator and “contents” of 
memory respectively. 
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Example 2.2:  Add 2 numbers with carry; carry generation 
 
  1111 1110 254 = (A) 
  0000 0110     6 = (M) 
         1     1 = CARRY 
Carry =  1        0000 0101     5 = (A) 
 
 

While the accumulator contains “5,” the carry flag signals the user that 

the result exceeded 255 and, therefore, the result can be properly 

interpreted as 256 + 5 = 261. 

 

 

2.2.1.0 Multiple Precision Addition 

 

To perform the addition of 2 numbers, one issues to the microprocessor 

an ADC instruction which adds the memory and the accumulator and 

stores the results in the accumulator with the carry bit going set if the 

results exceeded 255. 

 

To add numbers which had significantly higher value than 255, it would 

be necessary to represent these numbers by a series of serial 8-bit 

numbers. With the 16 bits in 2 serial 8-bit numbers, it is possible to 

represent binary numbers of greater than 65,000 in value. In order to 

add two 16-bit numbers together and thus accomplish double precision 

addition, one first loads the lowest byte of one number into the 

accumulator, clears the carry flag and then adds the second number to 

the first number in the accumulator using the ADC command. One would 

then store this result into another memory location using the STA command. 

The carry flag would now represent the carry from the lowest byte to the 

highest byte. One could then load the high order byte of the first number, 

add with carry again to the high value of the second number, and store 

the result in the high order byte of the result. Thus, it can be seen that the 

carry allows us to perform as much precision arithmetic as is necessary. 

The example listing below displays the commands used to execute the 

addition of two 16-bit numbers. 

 
 



 

9 

Example 2.3: Adding two 16-bit numbers 
 
  High Order Byte Low Order byte 
First Number  H1   L1 
Second Number  H2   L2 
Result of Addition H3   L3 
 
LDA L1 Load low order byte, first number 

CLC  Clear carry flag (carry = 0) 

ADC L2 Add L1 to low order byte, second number 

STA L3 Store result in memory, carry flag is still set if set in 

  ADC operation 

LDA H1 Load high order byte, first number 

ADC H2 Add H1 and carry value from first ADC operation to 

  high order byte, second number 

STA H3 Store result in memory 

 

In this example it was necessary to clear the carry flag before starting 
the add instruction. This, of course, means that commands exist that set 
and clear the carry flag allowing for addition without values generated 
from the prior operation. One could also, at the end of the program, 
check to see if the result exceeded 16 bits by testing the carry flag. 
Exactly how one alters and tests flags will be discussed in the Flag and 
Branches Section. The examples below display the concept of carry from 
the addition of the low order bytes. 
 
Example 2.4:  Add two 16-bit numbers, no carry from low order add 
 
 0000 0001 0000 0010   258 
 0001 0000 0001 0000 4112 
 Add low order bytes: (clear carry) 
  0000 0010 (A) 
  0001 0000 (M) 
Carry =   0 0001 0010 (A) 
 Add high order bytes (carry = 0): 
  0000 0001 (A) 
  0001 0000 (M) 
         0 CARRY 
Carry =  0 0001 0001 (A)  
           Result = 0001 000l 0001 0010  =  4370 
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Example 2.5: Add two 16-bit numbers, with carry from low order 
  add 
 
 0000 0001 1000 0000 384 

 0000 0000 1000 0000 128 

 Add low order bytes: (clear carry) 

  1000 0000 (A) 

  1000 0000  (M) 

Carry =  1 0000 0000 (A) 

 Add high order bytes: (carry = 1) 

  0000 0001 (A) 

  0000 0000 (M) 

          1 CARRY 

Carry =  0 0000 0010 (A) 

           Result = 0000 0010 0000 0000 = 512 

 

 

2.2.1.1 Signed Arithmetic 
 
It is possible to look at the add operation and the way data is 

represented in memory in a different way. If, in the 16-bit problem 

(Examples 2.4 and 2.5), one were working with 15 bits of precision (in 

other words, 15 bits of valid data) plus 1 bit of sign (0 for positive and 

1 for negative), it would be possible to perform signed binary arithmetic 

without changing the adder, but by merely changing the way the results 

are interpreted. In order to facilitate this concept, the microprocessor has 

the ability to represent positive or negative numbers by means of a sign 

flag which will be discussed at length in Section 3.7. In the MCS650X 

family, bit 7 is the sign position bit. This means that the highest order byte 

in a series of bytes should have the sign in the eighth position. If, for 

simplicity, one talks about signed 8-bit numbers, it would mean that one 

was allowed only 128 combinations of each sign because that is the most 

that can be represented in 7 bits, with the eighth bit or the highest bit 

reserved for the sign position. 
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Byte Orientation with sign position 

FIGURE 2.3 
 
 
In the following examples of signed arithmetic it should be noted that 

operations are occurring on a 7-bit field of numbers and that any carry 

generated out of that field will reside in the eighth bit – not in the carry 

flag discussed during the add operations. The generation of a carry out 

of the field is the same as when adding two 8-bit numbers, except for 

the fact that the normal carry flag does not correctly represent the fact 

that the field has been exceeded. This is because the true carry from 

adding the two 7-bit numbers resides in the sign bit position. Therefore, 

the carry flag has no real meaning. Instead, there is a separate flag, the 

overflow flag, used to indicate when a carry from 7 bits has occurred 

and allows the user to write correction programs. 

 

In each example, the negative numbers are in two's complement form. 

Also included in each result will be the status of the carry and overflow 

flags. The overflow flag is set whenever the sign bit (bit 7) is changed as 

a result of the operation. 

 

Example 2.6: Add 2 positive numbers with no overflow 

 

  0000 0101   +5 (A) 

  0000 0111    +7  (M) 

Carry =  0 0000 1100 +12 (A) 

 

Overflow =  0 “0” in bit 7 indicates positive result. 

  Note that both the carry and overflow flag remain 

  cleared. 
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Example 2.7: Add 2 positive numbers with overflow 
 
  0111 1111 +127 (A) 
  0000 0010 +   2 (M) 
Carry =  0 1000 0001   “–127” (A) 
 
Overflow =  1 “1” in bit 7 indicates negative result and the two's 
  complement of the result is 127; however, the overflow 
  flag is set indicating the allowable range was exceeded 
  in the addition. 
 
Therefore, examination of the overflow indicated that the result was in 
fact not negative but that the bit 7 position represented an overflow 
beyond the value of 127. Hence the user is flagged of an incorrect result 
and a correction routine (program) must follow. 
 
Example 2.8:  Add positive and negative number with positive result 
 
  0000 0101 +5 (A) 
  1111 1101 –3 (M) 
Carry =  1 0000 0010 +2 (A) 
 
Overflow =  0  “0” in bit 7 indicates positive result. (Recall that 
   though the carry flag is set, it has no meaning 
   in signed operations.) 
 
Example 2.9: Add positive and negative number with negative result 
 
  0000 0101 +5 (A) 
  1111 1001 –7 (M) 
Carry =  0 1111 1110 –2  (A) 
 
Overflow =  0  “1” in bit 7 indicates negative result. 
 
Example 2.10: Add 2 negative numbers without overflow 
 
  1111 1011   –5 (A) 
  1111 1001   –7 (M) 
Carry =  1 1111 0100 –12 (A) 
 
Overflow =  0  “1” in bit 7 indicates negative result. 
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Example 2.11: Add 2 negative numbers with overflow 
 
  1011 1110     –66 (A) 
  1011  1111     –65 (M) 
Carry =  1 0111 1101 “+125” (A) 
 
Overflow =  1  “0” indicates positive result, but the overflow 
   flag is set indicating that the allowable range 
   was exceeded in the operation. Without the 
   overflow indication, the result would be inter-
   preted as +125. The overflow, however, 
   indicated that the result was negative and 
   exceeded the value –128. Hence the user is 
   flagged of an incorrect result, indicating the 
   need for a correction routine. 
 

2.2.1.2 Decimal Addition 
 
There is a way for the user to organize data for decimal operations. The 
MOS Technology, Inc. MCS650X microprocessors have a modified adder 
which allows the user to represent his numbers as two 4-bit binary coded 
decimals (BCD) numbers packed into a single byte. This is a unique 
feature of the MCS650X family in that the operation in the following 
example can be performed. 
 
Example 2.12: Decimal addition 
 
CLC   Clear Carry Flag 
SED   Set Decimal Mode 
LDA 0111 1001    79  
ADC 0001 0100 +14  
STA 1001 0011    93  
 
The microprocessor adder has the unique capability of performing real 
time correction to the normal expected binary result without any direct 
interference from the programmer. Other popular microprocessors 
require a separate instruction (Decimal Adjust) which corrects the direct 
binary result of the arithmetic unit to obtain the same final results as are 
available on this microprocessor directly. 
 
In order to make the same arithmetic unit perform either as a binary 
adder or as a decimal adder, the user chooses the mode in which he is 
going to operate (either decimal or binary) by setting another flip-flop 
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in the microprocessor called the decimal flag. As shown in this example, 
one not only initializes the adder by clearing the carry flag, but also puts 
the processor into decimal mode with the SED instruction. Even though this 
also requires 1 instruction, it is possible to put the machine in decimal 
mode once and perform many long strings of decimal numbers without 
further user intervention. The “Decimal Adjust” feature on other 
microprocessors requires programming subsequent to each binary 
operation. 
 

2.2.1.3 Add Summary  

 

In summary, the basic arithmetic unit is a binary adder which, under 

control of the ADC command, performs binary arithmetic on the 

accumulator and data, storing the result in the accumulator. Depending 

on the way the user looks at the data which is presented to the adder 

and the results which are obtained from it, the user can determine whether 

or not the result exceeds 255 binary or 99 decimal; he can perform 

precision arithmetic by use of the ninth bit or carry flag; he can control 

whether or not the microprocessor is a decimal adder by setting the 

decimal mode; and he can represent his numbers as signed binary 

numbers by analyzing other flags that are set in the machine. 

 

2.2.2 SBC – Subtract Memory from Accumulator with Borrow 
 
This instruction subtracts the value of memory and borrow from the value 

of the accumulator, using two's complement arithmetic, and stores the 

result in the accumulator. Borrow is defined as the carry flag 

complemented; therefore, a resultant carry flag indicates that a borrow 

has not occurred. 

 

The symbolic representation for this instruction is: 

 

A – M – C → A. 

 

This instruction affects the accumulator. The carry flag is set if the result is 

greater than or equal to 0. The carry flag is reset: when the result is less 

than 0, indicating a borrow. The overflow flag is set when the result 

exceeds +l27 or –127, otherwise it is reset. The negative flag is set if the 
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result in the accumulator has bit 7 on, otherwise it is reset. The Z flag is 

set if the result in the accumulator is 0, otherwise it is reset. 

 
It is a “Group One” instruction. It has addressing modes Immediate; 
Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed 
Indirect; and Indirect Indexed. 
 
In a binary machine, the classical way to perform arithmetic is by using 
two's complement notation. In using two’s compliment notation, any 
subtraction operation becomes a sequence of bit complementations and 
additions. This reduces the complexity of the circuits required to perform 
a subtraction. 
 
When the SBC instruction is used in single precision subtraction, there will 
normally be no borrow; therefore, the programmer must set the carry 
flag, by using the SEC (Set carry to 1) instruction, before using the SBC 
instruction. The microprocessor adds the carry flag to the complemented 
memory data, resulting in a true two's complement form of the memory 
value with its sign inverted. 
 
Example 2.13: Subtract 2 numbers with borrow; positive result 
 
Assume a single precision subtraction where A contains 5 and M contains 
3. The carry flag must be set to a 1 using the SEC instruction, thereby 
representing the no-borrow condition. 
 
The adder changes the sign of M by taking the two's complement of M. 
This involves complementing M and adding the carry bit. 
 
     M =   3 0000 0011 
  Complemented M 1111 1100 
         Add C =   1         1 
              –M = –3 1111 1101 
 
The adder adds A and the two's complement –M together. This operation 
occurs simultaneously with the complement operation. 
 
    A =  5 0000 0101 
     Add –M = –3 1111 1101 
        Carry =  1 0000 0010 = +2 
 
The presence of the carry flag after this operation indicates that No 
Borrow was required, therefore the result is +2. 
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Example 2.14: Subtract 2 numbers with borrow; negative result 
 
Assume a single precision subtraction where A contains 5 and M contains 
6. Set the carry flag to a 1 with SEC to indicate No Borrow. 
 
     M = 6 0000 0110 
Complemented M 1111 1001 
         Add C = 1         1 
  –M = –6 1111 1010 
 
     A = 5 0000 0101  
       Add –M = –6 1111 1010  
          Carry =  0 1111 1111 = –1 
 
The absence of the carry flag after this operation indicates that a borrow 

was required, therefore the result is a –1 in two's complement form. The 

absolute (unsigned) result in straight binary could be obtained by taking 

the two's complement of this number. 

 

2.2.2.0 Multiple Precision Subtraction 

 

Double precision subtraction is implemented in a fashion similar to 

addition. An example for subtracting a 16-bit number and storing the 

result follows: 

 
Example 2.15: Subtracting two 16-bit numbers 
 
    High Order Byte    Low Order Byte 
First Number Second Number  H1   L1 
Second Number    H2   L2 
Result of Subtraction   H3   L3 
 
SEC  Set Carry 
LDA L1 Load Low Order Byte, first Number 
SBC L2 Subtract with Borrow, Low Order Byte of Second 
  Number from L1 
STA L3 Store Result in Memory 
LDA H1 Load High Order Byte, First Number 
SBC H2 Subtract with Borrow, High Order Byte of Second 
  Number from H1 
STA H3 Store Result in Memory 
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Example 2.16: Subtract in double precision format, positive result 
 
Assume a double precision subtraction where 255 is to be subtracted 
from 512 for an example. Since there has been no borrow coming into 
this subtraction operation, the carry flag must be set. 
 
Following are the 2 numbers in binary form: 
 
  High Order Byte Low Order Byte 
A field = 512   0000  0010    0000  0000 
M field = 255   0000   0000    1111  1111 
 
Since the adder can only operate on single byte numbers, the 
programmer must operate on the low order bytes first. 
 
            M = 1111 1111 
Complemented M = 0000 0000 
     Add C =         1 
  –M 0000 0001 
 
            A = 0000 0000 
   Add –M = 0000 0001  
         Carry =  0 0000 0001 
 
The carry is brought over to the subtract operation on the high order 
bytes. 
 
            M =  0000 0000 
Complemented M =  1111 1111 
             Add C = 0         0 
              –M 1111 1111 
 
  A =  0000 0010 
    Add –M =  1111 1111 
          Carry =  1 0000 0001 
 
The result in binary form follows: 
 
Carry =  1 0000 0001 0000 0001 = +257 
 
The presence of the carry flag after the highest order byte subtraction 
indicates that the entire number required No Borrow, therefore it is a 
positive number in straight binary form. 
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Example 2.17: Subtract in double precision format; negative result 
 
Now assume a double precision subtraction where 512 is to be subtracted 
from 255. Again, since there has been no borrow coming into this 
subtraction operation, the carry flag must be set. 
 
Following are the two numbers in binary form: 
 
  High Order Byte Low Order Byte 
A field = 255   0000   0000    1111   1111 
M field = 512   0000   0010    0000   0000 
 
Operating on the low order byte: 
 
    M = 0000 0000 
    M = 1111 1111 
  Add C = 1        1 
  Carry =  1 0000 0000 = –M 
 
       A = 1111 1111  
 Add –M =  1   0000 0000 
    Carry =  1 1111 1111 
 
The presence of the carry = 1 indicates no borrow. 
 
The carry is now brought over to the high order byte subtract operation: 
 
  M = 0000 0010 
  M = 1111 1101 
Add C = 1         1  
  1111 1110 
  A = 0000 0000 
      M + C = 1111 1110 
Carry =  0 1111 1110 
 
The result in binary form is: 
 
Carry =  0 1111 1110 1111 1111 = –257 
Carry =  0 indicates the presence of a borrow, therefore the 
  number is negative and is in two’s complement form. 
 

2.2.2.1 Signed Arithmetic 
 
Signed numbers can be subtracted, using the SBC instruction, just as easily 
as they can be added. The microprocessor converts the numbers from 
memory to its two's complemented form and then adds it to the value of 
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the accumulator just as it does in an unsigned subtract described in Section 
2.2.2. The addition operation is identical to that described, and to the 
examples given in Section 2.2.1.1 
 
It should be remembered that before using the SBC instruction, either 
signed or unsigned, the carry flag must be set to a 1 in order to indicate 
a no borrow condition. The resultant carry flag has no meaning after a 
signed arithmetic operation. 
 

2.2.2.2 Decimal Subtract 
 
As indicated in the Section 2.2.1.2, it is possible to represent numbers as 
packed 4-bit BCD numbers. In this case, which is again unique to this 
microprocessor, it is possible to make the adder act as though it is a 
decimal adder. In this case, the function of the machine is one of correcting 
for the subtraction of positive numbers by complementing the number, 
setting the carry and performing binary arithmetic with an automatic 
correction at the time the result is stored in the accumulator. The unique 
capabilities of this adder give the results as shown in the next example. 
 
Example 2.18: Decimal Subtraction 
 
SED   Set Decimal Mode 
SEC   Set Carry Flag 
LDA 0100 0100 44  
SBC 0010 1001 29 
STA 0001 0101 15 
 
By setting the decimal mode and setting the carry flag, one can subtract 
number 29 from number 44 with the results in the accumulator 
automatically being 15. 
 
As has been indicated, one can perform both addition and subtraction 
when the machine is set in decimal mode, treating the bytes to be added 
as unsigned, positive, binary coded digits. The carry flag in addition 
represents the case when the result in the number exceeded 99 and in 
subtraction the absence of the carry flag represents a true borrow 
situation. 
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2.2.3 Carry and Overflow During Arithmetic Operations 
 
It is necessary to set or reset the carry flag prior to the beginning of any 
arithmetic instruction. Because the carry flag is set or reset as a result of 
the arithmetic operation at the end of the loop, one can test the flag to 
determine whether or not a carry or a borrow occurred in the operation. 
By proper use of the overflow flag one can treat the high order bit of 
any set of bytes as a sign bit as long as the results of the negative 
numbers are carried in two’s complement form. The microprocessor also 
sets the overflow flip-flop to indicate when a result larger than can be 
stored in a 7-bit field has occurred and when the resultant sign is 
incorrect. In binary arithmetic the carry flag set indicates results in excess 
of 256, and in decimal arithmetic indicates results in excess of 99. 
Although the input carry is very important to these operations, a simple 
rule is: set the carry flag prior to subtract; clear the carry flag prior to 
add. 
 

2.2.4 Logical Operands 
 
In implementing a parallel binary adder there are several useful logic 
functions which are subsets of a binary add operation. In the MCS650X 
family, these subsets are used to implement the logical operands “AND,” 
“OR,” and “EOR” (Exclusive Or). These operations are used to test and 
control bit manipulations. 
 

2.2.4.1 AND – Memory with Accumulator 
 
The AND instructions transfer the accumulator and memory to the adder 
which performs a bit-by-bit AND operation and stores the result back in 
the accumulator. 
 
This instruction affects the accumulator; sets the zero flag if the result in 
the accumulator is 0, otherwise resets the zero flag; sets the negative 
flag if the result in the accumulator has bit 7 on, otherwise resets the 
negative flag. 
 

This is symbolically represented by A ɅɅɅɅ M → A. 
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AND is a “Group One” instruction having addressing modes of 
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; 
Indexed Indirect; and Indirect Indexed. 
 
One of the uses for the AND operation is that of resetting a bit in memory. 
In the example below. 
 
Example 2.19: Clearing a bit with AND 
 
LDA 1100 X111, where X is 0 or 1 
AND 1111 0111 
STA 1100 0111 
 
A byte is loaded into the accumulator and the AND instruction resets the 
accumulator bit 3 to 0. The accumulator is then stored back into memory, 
thereby resetting the bit. 
 
2.2.4.2 ORA “OR” Memory with Accumulator 
 
The ORA instruction transfers the memory and the accumulator to the 
adder which performs a binary “OR” on a bit-by-bit basis and stores the 
result in the accumulator. 
 
This is indicated symbolically by A ∨∨∨∨ M → A. 
 
This instruction affects the accumulator; sets the zero flag if the result in 
the accumulator is 0, otherwise resets the zero flag; sets the negative flag 
if the result in the accumulator has bit 7 on, otherwise resets the negative 
flag. ORA is a “Group One” instruction. It has the addressing modes 
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; 
Indexed Indirect; and Indirect Indexed. 
 
To set a bit, the OR instruction is used as shown below: 
 
Example 2.20: Setting a bit with OR 
 
LDA 1110 X111, where X is 0 or 1 
ORA 0000 1000 
STA 1110 1111 
 
 

2.2.4.3 EOR – “Exclusive OR”  Memory with Accumulator 
 
The EOR instruction transfers the memory and the accumulator to the 
adder which performs a binary “EXCLUSIVE OR” on a bit-by-bit basis 
and stores the result in the accumulator. 
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This is indicated symbolically by A ⊻⊻⊻⊻ M → A. 
 
This instruction affects the accumulator; sets the zero flag if the result in 
the accumulator is 0, otherwise resets the zero flag; sets the negative flag 
if the result in the accumulator has bit 7 on, otherwise resets the negative 
flag. 
 
EOR is a “Group One” instruction having addressing modes of Immediate; 
Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X; Indexed 
Indirect; and Indirect Indexed. 
 
One of the uses of the EOR instruction is in complementing bytes. This is 
accomplished below by exclusive ORAing the byte with all 1’s. 
 
Example 2.21: Complementing a byte with EOR 
 
LDA 1010 1111 
EOR 1111  1111 
STA 0101 0000 
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CHAPTER 3 

 
 

CONCEPTS OF FLAGS AND STATUS REGISTER 
 
 
 
 
 
 
 
 
 
 
 
 
 
One can view each of the individual flags or status bits in the machine as 

individual flip-flops. The carry flag can be considered the ninth bit of an 

arithmetic operation. The decimal mode flag is set and cleared by the 

user and used by the microprocessor to select either binary or decimal 

mode. For programming convenience the microprocessor treats all of the 

flags or status bits as component bits of a single 8-bit register. In Figure 

3.1 the processor status register (or “P” register) is added to the block 

diagram. 

 

 
Partial Block Diagram of MCS650X including P Register 

FIGURE 3.1 
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Each of the individual flags or bits has its own particular meaning in the 
microprocessor as defined in Figure 3.2. 
 

 
Processor Status Register 

FIGURE 3.2 
 

3.0 CARRY FLAG (C) 

 
The carry bit which is modified as a result of specific arithmetic operations 

or by a set or clear carry command has been discussed previously. In the 

case of shift and rotate instruction, the carry bit is used as a ninth bit as 

it is in the arithmetic operation. The carry flag can be set or reset by the 

programmer. A SEC instruction will set and a CLC instruction will reset the 

carry flag. Operations which affect the carry are ADC, ASL, CLC, CMP, 

CPX, CPY, LSR, PLP, ROL, RTI, SBC, SEC. 

 

3.0.1 SEC – Set Carry Flag 
 
This instruction initializes the carry flag to a 1. This operation should 
normally precede a SBC loop. It is also useful when used with a ROL 
instruction to initialize a bit in memory to a 1. 
 
This instruction affects no registers in the microprocessor and no flags 
other than the carry flag which is set. 
 
SEC is a single-byte instruction and its addressing mode is Implied. 
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3.0.2 CLC – Clear Carry Flag  
 
This instruction initializes the carry flag to a 0. This operation should 

normally precede an ADC loop. It is also useful when used with a ROL 

instruction to clear a bit in memory. 

 

This instruction affects no registers in the microprocessor and no flags 

other than the carry flag which is reset. 

 

CLC is a single-byte instruction and its addressing mode is Implied. 

 

3.1 ZERO FLAG (Z) 
 
This flag is automatically set by the microprocessor during any data 

movement or calculation operation when the 8 bits of results of the 

operation are 0. Therefore, the bit is on (“1”) when the results are 0, and 

off “0”, when the results are not equal to 0. The feature of the machine 

is similar to that of the PDP11 in the sense that operations which are 

decrementing index registers or memory locations have a built-in test for 

0 as a result of decrementing to the 0 condition. It is also possible to test 

for 0 condition immediately following load and other logical operations, 

as opposed to processors which have to do a test and branch instruction. 

The Z flag is not directly settable or resettable by an instruction but is 

affected by the following instructions: ADC, AND, ASL, BIT, CMP, CPY, 

CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, 

PLP, ROL, RTI, SBC, TAX, TAY, TXA, TYA. 

 

3.2 INTERRUPT DISABLE (I) 
 
The interrupt disable is a flip-flop made use of by the programmer and 
by the microprocessor to control the operations of the interrupt request 
pin. A more detailed discussion of the effects of the interrupt disable are 
given in the discussion under interrupt control. However, the purpose of 
the interrupt disable is to disable the effects of the interrupt request pin. 
The interrupt disable, I, is set by the microprocessor during reset and 
interrupt commands. The I bit is reset by the CLI instruction or the PLP 
instruction, or at a return from interrupt in which the interrupt disable was 
reset prior to the interrupt. The interrupt flag may be set by the 
programmer using a SEI instruction and is cleared by the programmer by 
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using a CLI instruction. Instructions which affect the interrupt disable are 
BRK, CLI, PLP, RTI and SEI. 
 

3.2.1 SEI – Set Interrupt Disable 
 
This instruction initializes the interrupt disable to a 1. It is used to mask 
interrupt requests during system reset operations and during interrupt 
commands. 
 
It affects no registers in the microprocessor and no flags other than the 
interrupt disable which is set. 
 
SEI is a single-byte instruction and its addressing mode is Implied. 
 

3.2.2 CLI – Clear Interrupt Disable 
 
This instruction initializes the interrupt disable to a 0. This allows the 
microprocessor to receive interrupts. 
 
It affects no registers in the microprocessor and no flags other than the 
interrupt disable which is cleared. 
 
CLI is a single-byte instruction and its addressing mode is Implied. 
 

3.3 DECIMAL MODE FLAG (D) 
 
As discussed, the use of the decimal mode flag is to control whether or 
not the adder operates as a straight binary adder for add and subtract 
instructions or as a decimal adder for add and subtract instructions. The 
SED instruction sets the flag and the CLD instruction resets it. The only 
instructions which affect the decimal mode flag are CLD, PLP, RTI and 
SED. 
 

3.3.1 SED – Set Decimal Mode 
 
This instruction sets the decimal mode flag D to a 1. This makes all 
subsequent ADC and SBC instructions operate as a decimal arithmetic 
operation. 
 
SED affects no registers in the microprocessor and no flags other than the 
decimal mode which is set to a 1. 
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3.3.2 CLD – Clear Decimal Mode 

 

This instruction sets the decimal mode flag to a 0. This causes all 

subsequent ADC and SBC instructions to operate as simple binary 

operations. 

 

CLD affects no registers in the microprocessor and no flags other than the 

decimal mode flag which is set to a 0. 

 

3.4 BREAK COMMAND (B) 

 

The break command flag is set only by the microprocessor and is used to 

determine during an interrupt service sequence whether or not the 

interrupt was caused by BRK command or by a real interrupt. A more 

detailed discussion of BRK is in the interrupt section. This bit should be 

considered to have meaning only during an analysis of a normal interrupt 

sequence. There are no instructions which can set or which reset this bit. 

 

3.5 EXPANSION BIT 

 

The next bit in the flag register is an unused bit. It is most likely that this 

bit will appear to be on when one is analyzing the bit pattern in the 

processor status register; however, no guarantee as to its state is made 

as this bit will be used in expanded versions of the microprocessor. 

 

3.6 OVERFLOW (V) 

 

As discussed in the section on arithmetic operations, if one is to look at the 

binary arithmetic operations as signed binary operations, there needs to 

be some indication of the fact the result of the arithmetic operation has a 

greater value than could be contained in the 7 bits of the result. This bit 

is the overflow bit and during ADC and SBC instructions represents a 

status of an overflow into the sign position. The user who is not using 

signed arithmetic can totally ignore this flag during his programming; 

however, this flag has the same meaning as the carry to the user who is 

using signed binary numbers. It indicates that a sign correction routine 

must be used if this bit is on after an add or subtract using signed numbers. 
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In addition to its use to monitor the validity of the sign bit in ADC and SBC 

instructions, the overflow flag in the MCS650X products is dramatically 

changed from PDP11 and the MC6800. In those systems the overflow 

flag was very carefully controlled so as to allow certain signed branches 

for analysis of signed numbers. These branches have been deleted from 

the MCS6500 series because of confusion and difficulty often associated 

with using them, and so therefore, the overflow flag is applicable only to 

the operation of ADC and SBC, and then only when using signed numbers. 

 

However, in order to maximize the effectiveness of this testable flag the 

BIT instruction which may be used to sample interface devices, allows the 

overflow flag to reflect the condition of bit 6 in the sampled field. During 

a BIT instruction the overflow flag is set equal to the content of the bit 6 

on the data tested with BIT instruction. When used in this mode, the 

overflow has nothing to do with signed arithmetic but is just another sense 

bit for the microprocessor. Instructions which affect the V flag are ADC, 

BIT, CLV, PLP, RTI and SBC. On certain versions of the microprocessor the 

V bit will also be available for stimulus from the outside world. 

 

3.6.1 CLV – Clear Overflow Flag 

 

This instruction clears the overflow flag to a 0. This command is used in 

conjunction with the set overflow pin which can change the state of the 

overflow flag with an external signal. 

 

CLV affects no registers in the microprocessor and no flags other than the 

overflow flag which is set to a 0. 

 

3.6.2 Determination of Overflow 

 

To briefly recap the concept of overflow detection, one must understand 

that the machine signals an overflow based on the data entered to the 

operation and the final result. Since, with signed arithmetic, the range of 

numbers that can be represented is +127 to –128, the overflow flag will 

never set when numbers of opposite sign are added, since their result will 

never exceed that range. The machine deals with this by recognizing that 

for any 2 positive numbers, the “bit 7” of each is a “0” and that for any 
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arithmetic operation yielding a result less than or equal to +127, the 

resultant “bit 7” must be a “0.” If it is a 1, the overflow flag is set. 

 

Similarly, when two negative numbers are added, the “bit 7” of each is 

a “1” and for any result yielding a value less than or equal to –128, 

the resultant “bit” must be a “1.” If it is a 0, the overflow flag is set. 

 

Therefore, the machine recognizes by knowledge of the “bit 7” of each 

of the numbers to be added what the resultant “bit 7” must be in a non-

overflow situation. If these conditions are not met, the overflow flag 

goes set. 

 

3. 7 NEGATIVE FLAG (N) 

 

As already discussed, one of the uses of the microprocessor is to perform 

arithmetic operations on signed numbers. To allow the user to readily 

sample the status of the sign bit (bit 7), the N flag is set equal to bit 7 of 

the resulting value in all data movement and data arithmetic. This means, 

for instance, after a signed add one can determine the sign of the result 

by sampling the N flag directly rather than finding a way to isolate bit 

7. Although signs were the primary purpose for which the N flag was 

intended, its usefulness far exceeds that of strictly a sign bit. 

 

Because of every operation including simple moves and add operations 

the N bit is equal to the status of bit 7 as a result of the operation; its 

primary use becomes that of an easily testable bit. Almost all single-bit 

instructions, all interrupts and all I/O status flags use bit 7 as a sense bit. 

This allows the user to perform some type of memory access operation 

such as Load A followed by immediate conditional branch based on the 

status of bit 7 as reflected in the N flag. Like the Z bit, this flag is not 

settable or controllable by the programmer and represents the status of 

the last data movement operation. Instructions which affect the negative 

flag are ADC, AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, 

INX, INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, SBC, TAX, TAY, TSX, 

TXA and TYA. 
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3.8 FLAG SUMMARY 

 

To summarize, the microprocessor treats a series of flags or status bits as 

a single register called the “P” or “Program Status” register. 

 

Some of these flags are controllable only by the programmer (such as 

the D flag); others are controllable by both the user program and 

microprocessor (such as the interrupt disable flag). Some of them are set 

and reset by almost every processor operation, such as the N and Z flags. 

Each of these flags has its own meaning to the programmer at a particular 

point in time. When combined with the concept of conditional branches, 

they represent a powerful test and jump capability not normally found in 

a machine of this magnitude. Other than perhaps the carry flag which is 

used as part of the arithmetic instructions, the flags by themselves have 

relatively little meaning unless one has the ability to test them. For this 

purpose there is a series of conditional branch instructions designed into 

the machine. 
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CHAPTER 4 
 
 

TEST, BRANCH AND JUMP INSTRUCTIONS 
 
 
 
 
 
 
 
 
 

4.0 CONCEPTS OF PROGRAM SEQUENCE 
 
In all the discussions up until now, there has been little discussion about 
how the microprocessor understands the instructions used to perform 
various arithmetic and accumulator manipulations. However, it is 
appropriate that the concept of a program and how the microprocessor 
determines each instruction be developed. More registers are required 
in the machine as shown in the figure below. 
 

 
 

Partial Block Diagram of MCS650X Including Program 
Counter and Internal Address Bus 

FIGURE 4.1 
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Although two 8 bit registers have been added, they are the only registers 

in the machine that act as though they are one 16 bit register. They 

implement a concept known as program count or program sequence and 

subsequently their value will be referred to as PC or program count. In 

certain operations it may be convenient to talk about how one affects the 

program count low (PCL) which will be the lower 8 bit register or the 

program count high (PCH) which will be the higher 8 bit register. The 

reason for this register being 16 bits in length is that if it had only 8 bits 

it would only be able to reference 256 locations. Since it is through the 

address bus that one accesses memory, the program counter which 

defines the addressable location, should be as wide a word as possible. 

 

The accessing of a memory location is called “addressing”. It is the 

selection of a particular eight-bit data word (byte) out of the 65,536 

possibilities for memory data locations. This selection is transmitted to the 

memory through the 16 address lines (ADH, ADL) of the microprocessor. 

 

For a more detailed discussion of how an individual memory byte is 

selected by the address lines, the reader is referred to Chapter 1 of the 

Hardware Manual. 

 

If the program counter was only 1 byte and if the bit pattern which allows 

the microprocessor to choose which instruction it wants to act on next, such 

as “LDA” as opposed to an “AND”, was contained in one byte of data 

we could only have 256 program steps. Although the machine of this 

length might make an interesting toy, it would have no real practical 

value. Therefore, almost all of the competitive 8 bit microprocessors have 

chosen to go to a double length program counter. Even though some of 

the microprocessors of the MCS650X family do not have all of the output 

address lines necessary to allow the user to address 65K bytes of 

program (due to package pinout constraints), in all cases the program 

counter is capable of addressing a full 65K by virtue of its 16 bit length. 
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4.0.1 Use of Program Counter to Fetch an Instruction 
 
The microprocessor contains an internal timing and state control counter. 

This counter, along with a decode matrix, governs the operation of the 

microprocessor on each clock cycle. When the state of the microprocessor 

indicates that a new instruction is needed, the program counter (program 

address pointer) is used to choose (address) the next memory location 

and the value which the memory sends back is decoded in order to 

determine what operation the MCS650X is going to perform next. 

 

To use the program counter to perform this operation correctly, it must 

always be addressing the operation the user wants to perform next. This 

operation may be an instruction or may be data on which the instruction 

will operate. 

 

In the MCS650X family, the program counter is set with the value of the 

address of an instruction. The microprocessor then puts the value of the 

program counter onto the address bus, transferring the 8 bits of data at 

that memory address into the instruction decode. The program counter 

then automatically increments by one and the microprocessor fetches 

further data for address operation necessary to complete the instruction. 

In the simple example below, 

 

Example 4.1: Accessing Instructions with the P Counter Value 

 

 P Counter* Location Contents 

   0100**  LDA *Program Counter 

   0101   ADC **Hexadecimal 

   0102   STA    Notation 

 

one can see how the program counter is used to access the instruction 

sequence load A, add with carry, and store the result. In this example, 

the program counter would start out containing 0100. The microprocessor 

would read location 0100 by using the program counter to access 

memory and would then interpret and implement the LDA instruction as 

previously described. The program counter will automatically increment 

by one on each instruction fetch, stepping to 0101. After performing the 

LDA, the microprocessor would fetch the next instruction addressing 
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memory with the program counter. This would pick up the ADC instruction, 

the add would then be performed, the program counter which has been 

incremented to 0102 would be used to address the next instruction, STA. 

The P counter incrementing once with each instruction is an oversimplified 

view of what actually transpires within the microprocessor. 

 

The MCS650X processors usually require more than one byte to correctly 

interpret an instruction. The first byte of an instruction is called the OP 

CODE and is coded to contain the basic operation such as LDA (load 

accumulator with memory) and also the data necessary to allow the 

microprocessor to interpret the address of the data on which the 

operation will occur. In most cases, this address will appear in memory 

right after the OP CODE byte: This allows the microprocessor to use the 

program counter to access the address as well as the OP CODE. 

 

The following example shows how the program counter picks up the 

instruction and the address of data located at address 5155. 

 

 

Example 4.2: Accessing Data Address With P Counter Value 

 

 P  Counter Location Contents 

     0100          LDA 

     0101           55 

     0102           51 

     0103  Next Instruction 

 

 

The OP CODE appears in Location Address 0100. The code for the 55 

would appear next in Location Address 0101 and the 51 would appear 

in Location Address 0102, and the OP CODE for the next instruction 

appears in Location Address 0103. In this example, we see that the 

program counter is used not only to pick up the operation code, LDA, but 

is also used to pick up the address of the memory location from which the 

LDA is going to obtain its data. In this case, the program counter 

automatically is incremented three times to pick up the full instruction with 

the microprocessor interpreting each of the individual fetches as the 
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appropriate data. In other words, the first fetch is used to pick up the OP 

CODE, LDA, the second fetch is used to pick up the low order address 

byte of the data and the third fetch is used to pick up the high order 

address byte of the data. This is the form in which many of the 

microprocessor instructions will appear as it is the most simple form of 

addressing in the machine and allows referencing to any memory 

location. 

 

Assuming that the microprocessor has the ability to start the program 

counter at a known instruction, it should be fairly obvious that the program 

counter would then continue to advance from that location up to the 

maximum memory location, roll over to the least memory location and 

continue incrementing through the memory, fetching instructions and 

addresses as it went. This would give us an interesting sequential program 

but one which lacked one tremendously powerful concept. The program 

would have no ability to perform tests or implement various options 

based on the results of those tests. 

 

In the previous section, the concept of flags which are set as a result of 

the microprocessor operations was developed. 

 

To use these flags, the program should be able to test them and then 

change the sequence of operations which are being performed 

depending on the result of the test. The program counter is going to 

continually put out an address, the microprocessor is going to fetch the 

instruction stored at that address and perform operations based on that 

instruction. In order to change a sequence of performed instructions by 

the microprocessor, the programmer must change the value in the 

program counter. Therefore, test instructions are incorporated which may 

result in a change of program count sequence as a result of performing 

one of the tests. The simplest way to change program sequence is to 

substitute a new value into the program counter location. In the MCS650X 

microprocessors the simplest way to change the program count sequence 

is with a JMP instruction. 
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4.0.2 JMP – Jump to New Location 
 
In this instruction, the data from the memory location located in the 
program sequence after the OP CODE is loaded into the low order byte 
of the program counter (PCL) and the data from the next memory location 
after that is loaded into the high order byte of the program counter 
(PCH). 
 
The symbolic notation for jump is (PC + 1)→PCL, (PC + 2)→PCH. 
 
As stated earlier, the “( )” means “contents of” a memory location. PC 
indicates the contents of the program counter at the time the OP CODE is 
fetched. Therefore (PC + 2)→PCH reads, “the contents of the program 
counter two locations beyond the OP CODE fetch location are transferred 
to the new PC high order byte.” 
 
The addressing modes are Absolute and Absolute Indirect. 
 
The JMP instruction affects no flags and only PCL and PCH. 
 
The JMP instruction allows use of the program counter to access the new 
program counter value as illustrated by the following example: 
 
Example 4.3: Use of JMP Instruction (Absolute Addressing Mode) 
 
 Address  Data       Comments 
   0100  JMP  Jump to Location 3625 
   0101   25  (New PCL byte) 
   0102   36  (New PCH byte) 
   3625  OP CODE Next Instruction 
 
The program counter in the example starts out at location 100. The 
microprocessor loads a jump instruction. The program counter 
automatically increments to 101 where the microprocessor picks up and 
temporarily stores the 25. The program counter automatically increments 
to 102 where the microprocessor picks up the 36. 
 
The 3625 is substituted into the program counter and is used to address 
the next instruction. Therefore, the JMP instruction contains within its 
address the new program counter location. 
 
Although the jump allows the change of program sequence, it does so 
without performing any test. So it is a jump instruction that is employed 
when it is desired to change the program counter no matter what 
conditions have occurred. 
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Another JMP addressing Mode is the Indirect Addressing Mode. 
 
Before this technique can be understood, the basis of indirect addressing 
found in Chapter 6 must be reviewed. The JMP Indirect instruction is 
detailed in Chapter 9, page 141. 
 
 

4.1 BRANCHING 
 
To allow for conditional program sequence change, there are a series of 
branch instructions which test and perform optional changes of the 
program counter based on the status of the flags. To perform a 
conditional change of sequence, the microprocessor must interpret the 
instruction, test the value of a flag, and then change the P counter if the 
value agrees with the instruction. If the condition is not met, the program 
counter continues to increment in its normal fashion. Figure 4.2 illustrates 
how a conditional test might be used. 
 

 
 

Use of Conditional Test 

FIGURE 4.2 
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In this example, it is seen that generation of a carry from the add 

operation will allow an out-of-sequence branch to a new location. 

 

4.1.1 Basic Concept of Relative Addressing 

 

If one considers that the instruction JMP required three bytes, one for OP 

CODE, one for new program counter low (PCL) and one for new program 

counter high (PCH) it is seen that jump on carry set would also require 

three bytes. Because most programs for control require many continual 

jumps or branches, the MCS650X uses “relative” addressing for all 

conditional test instructions. To perform any branch, the program counter 

must be changed. In relative addressing, however, we add the value in 

the memory location following the OP CODE to the program counter. This 

allows us to specify a new program counter location with only two bytes, 

one for the OP CODE and one for the value to be added. 

 

To illustrate this, in the following example, the branch on carry set (BCS) 

illustration is followed by a value of 50. If the carry is set, the new 

program location would be 108 + 50 = 158; in other words, it will take 

the branch. 

 

Example 4.4: Illustration of “Branch on Carry Set” 

 

 Address  Data      Comments 

   0100  LDA  Load First Value 

   0101  ADL1  First Number, low byte 

   0102  ADH1  First Number, high byte 

   0103  ADC  Add Second Value 

   0104  ADL2  Second Number, low byte 

   0105  ADH2  Second Number, high byte 

   0106  BCS  Test for Carry Set. If yes, 

     branch to 0158 

   0107  +50  

   0108  STA  If not, store results of add 

   0109  ADL3  Result, low byte 

   010A  ADH3  Result, high byte 

   0158  OP CODE New Instruction 
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The 0108 represent the value of the program counter after reading the 

offset value. The program counter automatically increments so it can 

reference the next memory location on the next cycle. The add of the 

offset is a signed binary add as discussed in the arithmetic section. A 

positive branch is indicated by a 0 in bit 7 of the relative value, and a 

minus branch is in two's complement form and is indicated by a 1 in bit 7. 

The inherent capabilities of this type of notation system allow branch 

conditionally forward 127 bytes from the next instruction and back 128 

bytes from that instruction. All branches in the MCS650X series are 

conditional relative branches and all have the form shown above. The 

advantage of relative addressing is best shown in the following example: 

 

Example 4.5: Sequencing Two Branch Instructions 

 

 Address  Data      Comments 

   0100  LDA  Load First Value 

   0101  ADL1  

   0102  ADH1  

   0103  ADC  Add Second Value 

   0104  ADL2  

   0105  ADH2  

   0106  BCS  Test for Carry Set. If 

     yes, branch to 0158 

   0107  +50 

   0108  BMI  Test for Minus Number. 

     If yes, branch to 0095 

   0109  –75 

   010A  STA  If not, Store 

   010B  ADL3 

   010C  ADH3 

  

In this example, the previous single-branch example was modified to also 

test the resulting number to see if it is negative. In sequencing two-branch 

instructions, this loop is 2 bytes shorter by use of relative branches rather 

than 3 byte branches. 
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4.1.2 Branch Instructions 
 

4.1.2.1 BMI – Branch on Result Minus 
 
This instruction takes the conditional branch if the N bit is set. 
 
BMI does not affect any of the flags or any other part of the machine 
other than the program counter and then only if the N bit is on. 
 
The mode of addressing for BMI is Relative. 
 

4.1.2.2 BPL – Branch on Result Plus 
 
This instruction is the complementary branch to branch on result minus. It is 

a conditional branch which takes the branch when the N bit is reset (0). 

BPL is used to test if the previous result bit 7 was off (0) and branch on 

result minus is used to determine if the previous result was minus or bit 7 

was on (1). 

 

The instruction affects no flags or other registers other than the P counter 

and only affects the P counter when the N bit is reset. 

 
The addressing mode is Relative. 
 

4.1.2.3 BCC – Branch on Carry Clear 
 
This instruction tests the state of the carry bit and takes a conditional 
branch if the carry bit is reset. 
 
It affects no flags or registers other than the program counter and then 
only if the C flag is not on. 
 
The addressing mode is Relative. 
 

4.1.2.4 BCS – Branch on Carry Set 
 
This instruction takes the conditional branch if the carry flag is on. 
 
BCS does not affect any of the flags or registers except for the program 
counter and only then if the carry flag is on. 
 
The addressing mode is Relative. 
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4.1.2.5 BEQ – Branch on Result Zero 
 
This instruction could also be called “Branch on Equal.” 
 
It takes a conditional branch whenever the Z flag is on or the previous 
result is equal to 0. 
 
BEQ does not affect any of the flags or registers other than the program 
counter and only then when the Z flag is set. 
 
The addressing mode is Relative. 
 

4.1.2.6 BNE – Branch on Result Not Zero 
 
This instruction could also be called “Branch on Not Equal.” 
 
It tests the Z flag and takes the conditional branch if the Z flag is not on, 
indicating that the previous result was not zero. 
 
BNE does not affect any of the flags or registers other than the program 
counter and only then if the Z flag is reset. 
 
The addressing mode is Relative. 
 

4.1.2.7 BVS – Branch on Overflow Set 
 
This instruction tests the V flag and takes the conditional branch if V is on. 
 
BVS does not affect any flags or registers other than the program counter 
and only when the overflow flag is set. 
 
The addressing mode is Relative. 
 

4.1.2.8 BVC – Branch on Overflow Clear 
 
This instruction tests the status of the V flag and takes the conditional 
branch if the flag is not set. 
 
BVC does not affect any of the flags and registers other than the 
program counter and only when the overflow flag is reset. 
 
The addressing mode is Relative. 
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4.1.3 Branch Summary 

 

To summarize, the MCS650X branches have two characteristics; each of 

them tests the state of a flag and then either accesses the next instruction 

in program sequence if the flag is not in the test state or adds the offset 

value to the PC value at the OP CODE of the next instruction (PC + 1) to 

allow the program to change operations. This allows the programmer the 

full ability to make decisions. By writing a sequence of branch instructions, 

any combination of conditions of the microprocessor may be determined 

and new action taken as a result of the tests. 

 

There are four branch conditions in the MCS6501-5 microprocessors. 

These are branch on carry flag, branch of overflow flag, branch on N 

flag, and branch on zero flag. Each of the branches has a branch on flag 

set (1) or a branch on flag clear (0). 

 

4.1.4 Solution to Branch Out of Range 

 

The branch relative instruction is unlike the jump instruction which can reach 

anywhere in memory, since branch relative is limited to +127 or –128 

from the current program counter location. Although for many loops and 

many tests this is sufficient range, longer programs will occasionally find 

it necessary to conditionally branch to a location that is significantly 

further away than the branch command will directly reach. This is one of 

the uses of complementary branches. If a program should find it 

necessary to branch to a location which was significantly further away 

than 127, the following solution would facilitate the branch: 
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Example 4.6: Use of JMP to Branch 0ut of Range 
 
 Address  Data      Comments  
   100  LDA  Load First Value 
   101  ADL1 
   102  ADH1 
   103  ADC  Add Second Value 
   104  ADL2 
   105  ADH2 
   106  BCC  Branch, if no carry, 
     Ahead 3 (to Point 2) 
   107  +3 
   108  JMP  If carry set, jump to 
     location specified by 
     ADH4, ADL4 
   109  ADL4 
   10A  ADH4 
Point 2   10B  BMI  Check for minus 
   10C  Offset 
   10D  STA 
   10E  ADL3  If not Minus, Store 
     Result  
   10F  ADH3 
 
In this example, carry set is being checked. In order to accomplish this 
when the branch command would have to reach outside of the 128 range, 
the use of a complementary branch is required. Instead of doing the 
“branch on carry set” to the location, the “branch on carry clear” is utilized 
(a complementary instruction) which branches past the jump. If the 
complementary branch is not taken, the jump is the “branch on carry set” 
function. 
 
This technique of branching past a jump with the complementary branch 
is a universal solution to the branch out of range problem. 
 
Another solution is to find a like branch to the same location that is within 
range and although this involves two branches to transfer control, it does 
save memory locations. 
 
By use of the relative branch less bytes of code are used than if a 
conditional jump had been used. However, in large programs, the branch 
out of range occurs more frequently. If the user can determine that a 
branch will be out of range by inspection, he should use the jump solution 
at the time he is writing the code. Otherwise the various assemblers 
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indicate an out of range branch which will require recoding to use the 
jump solution. 
 
NOTE: The jump solution causes 5 bytes of code to be substituted for 2 
 bytes of branch which in a symbolic assembly may force other 
 branches to go out of range. This might cause several 
 consecutive reassemblies but this technique will solve the 
 problem. 
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4.2 TEST INSTRUCTIONS 

 

Although most of the normal operations of the microprocessor involve 

setting of flags, there are specific instructions which are designed only to 

set flags for testing with the branch instruction. 

 

4.2.1 CMP – Compare Memory and Accumulator 

 

This instruction subtracts the contents of memory from the contents of the 

accumulator. 

 

Its symbolic notation is A – M. 

 

The use of the CMP affects the following flags: Z flag is set on an equal 

comparison, reset otherwise; the N flag is set or reset by the result bit 7, 

the carry flag is set when the value in memory is less than or equal to the 

accumulator, reset when it is greater than the accumulator. The 

accumulator is not affected. 

 

It is a “Group One” instruction and therefore has as its addressing modes: 

Immediate; Zero Page; Zero Page,X; Absolute; Absolute,X; Absolute,Y; 

(Indirect,X); (Indirect),Y. 

 

The purpose of the compare instruction is to allow the user to compare a 

value in memory to the accumulator without changing the value of the 

accumulator. An example of where this becomes extremely important is 

when one is receiving command instructions from an external device. In 

this case, an input byte may have several values. Each value can cause 

the program to perform a different operation. The only rapid way to 

determine the value of the input data is to compare the memory with a 

series of constants. It is fairly simple to perform “compare to constant” 

operations. By use of the immediate addressing mode which will be 

developed later, the following example compares an input to three 

values and branches to different locations for each: 

 
 
 
 



 

46 

Example 4.7: Using the CMP instruction 
  
 Data  Comments 
 LDA  Load Value 
 ADL  Address Low 
 ADH  Address High 
 CMP  Compare COUNT 1 to Accumulator 
 COUNT 1 
 BEQ  If Equal, take the branch to OFFSET 1 
 OFFSET 1  
 CMP  Compare COUNT 2 to Accumulator 
 COUNT 2 
 BEQ  If Equal, take the branch to OFFSET 2 
 OFFSET 2 
 CMP  Compare COUNT 3 to Accumulator 
 COUNT 3 
 BEQ  If Equal, take the branch to OFFSET 3 
 OFFSET 3 
 Next Inst. Otherwise, go to Next Instruction based on 
   default value (COUNT 4). 
 
This example shows how to use the default option. A value was compared 
against 3 values and if none were equal a fourth, or default value, is 
assumed. This is a useful technique for code minimization. 
 
The compare instruction is designed to allow a signed comparison 
between 2 values assuming one makes appropriate use of the Z and N 
and C flags. In order to give maximum flexibility to the instruction, the 
instruction performs an effective subtract between the value in memory 
and the value in the accumulator. The reason it is an effective subtract is 
that subtraction allows the user to compare equal or less with one 
instruction. 
 
The results of a compare are: 
 

 N C Z V 
Accumulator < Memory Either Reset Reset Unchanged 
Accumulator = Memory Reset Set Set Unchanged 
Accumulator > Memory Either Set Reset Unchanged 

 
So, to check if the accumulator is less than memory, the compare is 
followed by a BCC; to check if equal to is followed by a BEQ; and to 
check if greater it is followed by a BEQ followed by a BCS. Greater than 
or equal is checked by BCS. 
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4.2.2 Bit Testing 

 

The comparison instruction is designed for cases when byte or multiple 

bytes of values are being compared; however, in the analysis of logic 

functions, it is very often necessary to determine the condition of an 

individual bit. One of the ways to accomplish this is with the use of the 

AND instruction as previously discussed. In other words, the user can load 

a value into the accumulator and AND it with a field that contains a one 

bit only in the corresponding bit position to the bit under test. By using a 

Branch on Zero Flag after the AND, the status of the bit in memory is 

testable by this technique. However, the use of this technique involves 

destroying the accumulator value with the AND instruction. Therefore, 

searching a table looking for a single bit in a given position would 

necessitate the reloading of the test value (mask) after each AND 

instruction. 

 

In order to allow memory sampling without disturbing the accumulator, 

the BIT instruction is used. 

 

4.2.2.1 BIT – Test bits in Memory with Accumulator 

 

This instruction performs an AND between a memory location and the 

accumulator but does not store the result of the AND into the accumulator. 

 

The symbolic notation is M ɅɅɅɅ A. 

 

The bit instruction affects the N flag with N being set to the value of bit 

7 of the memory being tested, the V flag with V being set equal to bit 6 

of the memory being tested and Z being set by the result of the AND 

operation between the accumulator and the memory if the result is Zero, 

Z is reset otherwise. It does not affect the accumulator. 

 

The addressing modes are Zero Page and Absolute. 

 

The BIT instruction actually combines two instructions from the PDP-11 and 

MC6800, that of TST (Test Memory) and (BIT Test). This, like the compare 

test, allows the examination of an individual bit without disturbing the 

value in the accumulator and is illustrated by the example below: 
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Example 4.8: Sample Program Using the BIT Test 
 
 Data  Comments 
 LDA  Load MASK into Accumulator 
 MASK 
 BIT  Test First Memory Value for Mask Bit 
 ADL1 
 ADH1 
 BNE  Branch if Set 
 +50 
 BIT  Test Secondary Memory Value for Mask Bit 
 ADL2 
 ADH2 
 BNE  Branch if Set 
 –75 
 Etc. 
  
The value “MASK” loaded into the accumulator in this example is actually 

a descriptive title since, this byte is 8 bits, only one of which is a 1. Using 

this byte in the AND operation inherent in the BIT test will effectively mask 

out all bits in the memory location under test except that bit position 

corresponding to the 1 residing in the accumulator. In Example 4.8, the 

MASK byte is AND'ed to the data found in location ADH1, ADL1 and if 

the bit under test is a 1, the branch will be taken; if not a 1, the second 

memory location will be tested with the same mask, etc. 

 

In addition to the non-destructive feature of the bit which allows us to 

isolate an individual bit by use of the branch equal or branch not equal 

test, two modifications to the PDP-11 version of that instruction have been 

made in the MCS650X microprocessor. These are to allow a test of bit 7 

and bit 6 of the field examined with the BIT test. This feature is 

particularly useful in serving polled interrupts and particularly in dealing 

with the MCS6520 (Peripheral Interface Device). This device has an 

interrupt sense bit in bit 6 and bit 7 of the status words. It is a standard 

of the M6800 bus that whenever possible, bit 7 reflects the interrupt 

status of an I/O device. This means that under normal circumstances, an 

analysis of the N flag after a load or BIT instruction should indicate the 

status of the bit 7 on the I/O device being sampled. To facilitate this test 

using the Bit instruction, bit 7 from the memory being tested is set into the 
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N flag irrespective of the value in the accumulator. This is different from 

the bit instruction in the M6800 which requires that bit 7 also be set on 

the accumulator to set N. The advantage to the user is that if he decides 

to test bit 7 in the memory, it is done directly by sampling the N bit with 

a Bit followed by branch minus or branch plus instruction. This means that 

I/O sampling can be accomplished at any time during the operation of 

instructions irrespective of the value preloaded in the accumulator. 

 

Another feature of the BIT test is the setting of bit 6 into the V flag. As 

indicated previously, the V flag is normally reserved for overflow into the 

sign position during an add and subtract instruction. In other words, the V 

flag is not disturbed by normal instructions. When the BIT instruction is 

used, it is assumed that the user is trying to examine the memory that he 

is testing with the BIT instruction. In order to receive maximum value from 

a BIT instruction, bit 6 from the memory being tested 1s set into the V 

flag. In the case of a normal memory operation, this just means that the 

user should organize his memory such that both of his flags to be tested 

are in either bit 6 or bit 7, in which case an appropriate mask does not 

have to be loaded into the accumulator prior to implementing the BIT 

instruction. In the case of the MCS6520, the BIT instruction can be used 

for sampling interrupt, irrespective of the mask. This allows the 

programmer to totally interrogate both bit 6 and bit 7 of the MCS6520 

without disturbing the accumulator. In the case of the concurrent interrupts, 

i.e., bit 6 and bit 7 both on, the fact that the V flag is automatically set 

by the BIT instruction allows the user to postpone testing for the “6th bit 

on” until after he has totally handled the interrupt “for bit 7 on” unless he 

performs an arithmetic operation subsequent to the BIT operation. 
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CHAPTER 5 
 
 

NON-INDEXING ADDRESSING TECHNIQUES 
 
 
 
 

5.0 ADDRESSING TECHNIQUES 

 
The addressing modes of the MCS6500 family can be grouped into two 
major categories: Indexed and Non-Indexed Addressing. This section 
deals with the Non-Indexed mode of addressing. Before detailing the 
various modes available to the user, several concepts will be reviewed. 
The first of these is the concept of memory field, address bus and data 
bus. Then a brief introduction to two non-indexed addressing modes and 
timing will be made with the intent of preparing the reader for a 
discussion of program sequence and the internal activity of the 
microprocessor during execution of an instruction. This will be followed by 
a review of how one treats memory and the assorted allocation of 
memory space to the elements of RAM, ROM and I/O. 
 
Subsequent to reading this section the user should have an understanding 
of the following fundamentals: 
 
 a) Memory Field 
 b)  Address Bus 
 c) Data Bus 
 d) Cycle Timing 
 e) Program Sequence 
 f) Pipelining 
 
With these tools in hand, the reader will be better prepared to readily 
comprehend the detailed definitions of the non-indexed addressing 
modes. 
 
As discussed in Section 1.1 the MCS650X microprocessor family is 
organized around a 16-bit address function. All locations are accessed 
by a 16-bit word, even though in the case of the MCS6503, the 
MCS6504, and the MCS6505, only 11 or 12 bits are actually utilized. 
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Sixteen bits of address allow access to 65,536 memory locations, each 

of which, in the MCS650X family, consists of 8 bits of data. Figure 5.1 

displays the total memory field and incorporates the concept of address 

bus and data bus. The memory address can be regarded as 256 pages 

(each page defined by the high order byte) of 256 memory locations 

(bytes) per page. It will be seen in the detailed discussion of addressing 

that the lowest order page, page zero, has special significance in the 

minimization of program code and execution time. 

 

Much of the uniqueness of the MCS6500 product family has to do with 

how the 16-bit address is created. The simplest way to create a 16-bit 

address is for the programmer to indicate to the microprocessor the 16 

bits necessary to access a particular operand on which the microprocessor 

is expected to operate. An instruction consists of 1, 2, or 3 bytes. It always 

takes 1 byte to specify the operation which is to be performed (OP 

CODE). This OP CODE is then followed by 0, 1, or 2 bytes of address 

depending on the specific operation involved. In the case of the simple 

instructions such as transfer accumulator to X, operations are performed 

internally and, therefore, no additional bytes are necessary. This 

instruction mode is known as “Implied” in the sense that the instruction 

contains both the OP CODE and the source and destination for the 

operation. This is the simplest form of addressing and applies to only a 

limited number of the instructions available in the MCS6500 family. 

Another form of addressing, absolute addressing, is the case when the 

programmer specifies directly to the microprocessor the address he wants 

the microprocessor to use in fetching the memory value on which the 

operation will occur. This form is illustrated by the example below. 

 
Example 5.1: Using absolute addressing 
 

Clock Cycle Address Bus Data Bus 

1 0100 LDA, Absolute 

2 0101 ADL 

3 0102 ADH 

4 ADH, ADL DATA 

 
In this example, memory location 0100 contains the OP CODE “LDA 
Absolute.” The next location, 0101, contains ADL which will be defined as 
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the “low order byte of the address,” hence address low (ADL). Location 
0102 contains ADH – the “high order byte of the address,” hence address 
high, (ADH). At the next clock cycle, the 16 bits composed of ADH and 
ADL are put on the address bus with the location defined by ADH, ADL 
containing the data to be loaded into the accumulator. The effective 
address of the data is best described in Figure 5.1, where the 16-bit 
address (AB00 through AB15) is composed of ADH and ADL. 
 

This is the normal form for an absolute memory address. The first byte of 

the instruction which is picked up by the program counter is the operation 

code. This is interpreted by the microprocessor as “Load A – Absolute.” 

At the same time that this Load A is being interpreted by the 

microprocessor, the microprocessor accesses the next memory location by 

putting the program counter content, which was incremented as the OP 

CODE was fetched, on the address bus. 

 

5.1 CONCEPTS OF PIPELINING AND PROGRAM SEQUENCE 

 

The overlap of fetching the next memory location while interpreting the 

current data from memory minimizes the operation time of a normal 2 or 

3-byte instruction and is referred to as pipelining. It is this feature that 

allows a 2-byte instruction to only take 2 clock times and a 3-byte 

instruction to be interpreted in 3 clock cycles. 

 

In the MCS650X microprocessors, a clock cycle is defined as 1 complete 

operation of each of the 2 phase clocks. Figure 5.2 is a sketch of the 

address and data bus timing as it relates to the system clocks. 

 

The major point to be noted is that every clock cycle in the MCS650X 

microprocessor is a memory cycle in which memory is either read or 

written. Simultaneously with the read or write of memory, an internal 

operation of the microprocessor is also occurring. 
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5.1 
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Example of Timing – MCS650X Family 

FIGURE 5.2 
 
The following example will let us analyze this effect: 
 
Example 5.2: Demonstration of “Pipelining” effect 
 

Clock 
Cycles External Operation Address Data Internal Operation 
     

1 Fetch OP CODE 100 ADC Increment P-counter to 
101 

2 Fetch first-address 
half from memory 

101 ADL Increment P-counter to 
102, interpret ADC 
instruction 

3 Fetch second-address 
half from memory 

102 ADH Increment P-counter to 
103, hold ADL 

4 Fetch operand from 
memory 

ADH, 
ADL 

DATA Load DATA 

5 Fetch next OP CODE 
from memory 

103 STA Increment P-counter to 
104, perform ADC 
operation 
A + M + C 

6 Fetch address from 
memory 

104 ADL Increment P-counter to 
105, result of add → 
accumulator, interpret 
STA instruction 

 
The above example shows the operation of an ADC, add with carry 
instruction, using absolute addressing. In the first cycle, the OP CODE is 
fetched from memory addressed by the P-counter. To implement the look-
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ahead or pipeline in cycle two, the fetch of ADL address low is done 
simultaneously with the interpretation of the ADC absolute instruction. By 
the end of cycle 2, the microprocessor knows that it should access the next 
memory location for the address high as a result of interpretation of the 
absolute addressing mode. 
 
The address low (ADL) is stored in the ALU while the address high (ADH) 

is being fetched in cycle 3. 

 

On the fourth cycle, no internal operation is necessary while the 

microprocessor is putting the calculated value onto the address bus. 

However, during this cycle, the operand is loaded into the microprocessor. 

 

The 4 cycles have all been involved with memory access for the ADC, 

absolute instruction. The first to fetch the instruction, the second to fetch 

the address low, the third to fetch the address high and the fourth to use 

the calculated address to fetch the operand. Because that completes the 

memory operations for this instruction, during the fifth cycle the 

microprocessor starts to fetch the next instruction from memory while it is 

completing the add operation from the first instruction. During the sixth 

cycle, the microprocessor is interpreting the new instruction fetched during 

cycle 5 while transferring the result of the add operation to the 

accumulator. This means that even though it really takes 6 cycles for the 

microprocessor to do the ADC instruction, the programmer only need 

concern himself with the first 4 cycles as the next 2 are overlapped as 

shown. 

 

All instructions take at least 2 cycles; one to fetch the OP CODE and 1 to 

interpret the OP CODE and, with few exceptions, the number of cycles 

that an instruction takes is equal to the number of times that memory must 

be addressed. 

 

The details of how each addressing mode is overlapped are described 

in the individual sections and for specific details of each cycle in various 

operations, the user is referred to the Hardware Manual, Appendix A. 
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5.2 MEMORY UTILIZATION 

 

As indicated, the 16-bit address allows the user to access greater than 

65,000 separate locations. Most of the locations which will be accessed 

in the course of a control problem will be in program or P-counter 

referenced locations. A typical program will probably range from 1000 

to 8000 bytes and will normally be implemented in fixed ROM or non-

volatile alterable ROM. 

 

A second type of memory will be the read-write memory in which the user 

keeps data such as working values, input and output data. Depending on 

the type of problem being addressed, this RAM usually ranges from 32 

bytes to 8000 bytes, although most applications will be under 2000 

bytes of RAM. 

 

It would seem there is significant address space not used in most 

applications. To get the maximum benefit of the addressing space, 2 

concepts are implemented in the MCS6500 family. These are the use of 

data addressing as I/O control and distributed address connections for 

minimum control lines. The latter concept utilizes the address bus, which is 

basic too and therefore pervasive in any microcomputer system, as a 

controlling network whenever possible. An example of this is the use of 

the address bus in selecting devices to interface with the microprocessor. 

 

5.2.1 I/O Control 

 

The advantages of accessing I/O as memory are 1) the use of distributed 

address space allows for simple I/O control lines and 2) all of the power 

of the instructions is applied to I/O operations. This has the advantage 

of minimizing I/O hardware and allows the programmer to be innovative 

in the application of I/O devices in solving his problem. 

 

MCS6500 product family I/O devices contain 8-bit registers which are 

addressed by the microprocessor as though they were a memory byte. In 

the simplest case, the 8-bit register being read contains a 1 and 0's 

pattern which corresponds to the TTL voltage level applied to 8 input pins 

to the I/O device. 
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If the register was a flip-flop register driving 8 output pins with TTL levels, 
the storing of 8 bits of data with a STA instruction into that I/O register 
would, in effect, be programming the flip-flop to a specific desired state. 
Thus, one can use the instructions with the I/O just as any other memory 
location. 
 

5.2.2 Memory Allocation  
 
Figure 5.1 displays the relationship between memory, address bus and 
data bus while referencing the address values in hexadecimal notation. 
The previous section has dealt with utilization of memory address space 
for not only ROM and RAM but for I/O as well. At this time, the concept 
of allocation of the memory field of Figure 5.1 to the elements of ROM, 
RAM and I/O will be considered. The allocation below satisfies most 
applications requirements and represents an optimum allocation for 
minimization of programming code and speed. 
 

Hexadecimal Address Suggested Allocation of Memory 
  

0000 – 3FFF RAM 
4000 – 7FFF I/O 
8000 – FFFF ROM 

 
It should be noted that the 3 memory blocks address definitions which, 
while not mandatory or required for proper system operation, do 
represent a logical assignment of space. The justification for this 
particular allocation will be presented in Section 9.12. In the meantime, 
the reader should retain the concept of the various memory blocks 
allocated to RAM, I/O and ROM as they are useful in the following 
discussion. With an understanding of pipelining and the concept of 
memory allocation, the next subject must be: in what manner can data be 
accessed from the memory field? 
 

5.3 IMPLIED ADDRESSING 

 
Implied addressing is a single-byte instruction. 
 
The byte contains the OP CODE which stipulates an operation internal to 
the microprocessor. Instructions utilizing this type of addressing include 
operations which clear and set bits in the P (Processor Status) register, 
incrementing and decrementing internal registers and transferring 
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contents of one internal register to another internal register. Operations 
of this form take 2 clock cycles to execute. Use first cycle is the OP CODE 
fetch and during this fetch, the program counter increments. 
 
In the second cycle, the incremented P-counter is now the address of the 

next byte of the instruction. However, since the OP CODE totally defines 

the operation, the second memory fetch is worthless and any P-counter 

increment in the second cycle is suppressed. During the second cycle, the 

OP CODE is decoded with recognition of its single byte operation. 

 

In the third cycle, the microprocessor repeats the same address to fetch 

the next OP CODE. This is the second time the memory address is fetched; 

once as the second byte of the first instruction and second, as the correct 

OP CODE address for the next instruction. 

 

A symbolic representation of a 2-cycle instruction is given below. “PC” 

means “Program Counter.” 

  
Example 5.3: Illustration of implied addressing 

 
Instructions which use implied addressing and require only 2 cycles include 

CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED, SEI, TAX, TAY, 

TSX, TXA, TXS, TYA. 

 

Instructions utilizing implied addressing and which require more than 2 

cycles are stack operations which include BRK, PHA, PHP, PLA, PLP, RTI, 

RTS. 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1     PC PC + 1 OP CODE Fetch OP CODE 

2     PC + 1 PC + 1 New 
OP CODE 

Ignore New 
OP CODE; 
Decode Old 
OP CODE 

3     PC + 1 PC + 2 New 
OP CODE 

Fetch New 
OP CODE; 
Execute Old 
OP CODE 
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5.4 IMMEDIATE ADDRESSING 
 
Immediate addressing is a 2-byte instruction. 
 
The first byte contains the OP CODE specifying the operation and 
address mode. The second byte contains a constant value known to the 
programmer. It is often necessary to compare load and/or test against 
certain known values. Rather than requiring the user to define and load 
constants into some auxiliary RAC, the microprocessor allows the user to 
specify values which are known to him by the immediate addressing 
mode. 

 
Example 5.4: Illustration of immediate addressing 

 
Immediate addressing is the simplest form of constant manipulation 
available to the programmer. It requires a minimum execution time in the 
sense that 1 cycle is used in loading the OP CODE and as this CODE is 
being interpreted, the constant is being fetched. 
 
Instructions utilizing immediate addressing are ADC, AND, CMP, CPX, 
CPY, EOR, LDA, LDX, LDY, ORA, and SBC. 
 
5.5 ABSOLUTE ADDRESSING 
 
Absolute addressing is a 3-byte instruction. 
 
The first byte contains the OP CODE for specifying the operation and 
address mode. The second byte contains the low order byte of the 
effective address (that address which contains the data), while the third 
byte contains the high order byte of the effective address. Thus the 
programmer specifies the full 16-bit address and, since any memory 
location can be specified, this is considered the most normal mode for 
addressing. Other modes may be considered special subsets of this 16-
bit addressing mode. 
 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1    PC PC + 1 OP CODE Fetch OP CODE 

2    PC + 1 PC + 2 DATA Fetch DATA, 
Decode OP CODE 

3    PC + 2 PC + 3 New 
OP CODE 

Fetch New 
OP CODE; 
Execute Old 
OP CODE 



 

60 

Example 5.5: Illustration of absolute addressing 

 
The basic operation of the microprocessor in an Absolute address mode 
is to read the OP CODE in the first cycle while finishing the previous 
operation. In the second cycle, the microprocessor automatically reads 
the first byte after the OP CODE (in this case the address low) while 
interpreting the operation code. At the end of this cycle, the 
microprocessor knows that it needs a second byte for program sequence; 
therefore, 1 more byte will be accessed using the program counter while 
temporarily storing the address low. This occurs during the third cycle. In 
the fourth cycle, the operation is one of taking the address low and 
address high that were read during cycles 2 and 3 to address the 
operand. For example, in load A, the effective address is used to fetch 
from memory the data which is going to be loaded in the accumulator. In 
the case of storing, data is transferred from the accumulator to the 
addressed memory. 
 
As was illustrated in the review of pipelining, depending on the instruction, 

it is possible for the microprocessor to start the next instruction fetch cycle 

after the effective address operation and independent of how many 

more internal cycles it may take to complete the OP CODE. The only 

exception to this is the case of “Jump Absolute” in which the address low 

and address high that are fetched in cycle 2 and cycle 3 are used as the 

16-bit address for the next OP CODE. The jump absolute therefore only 

requires 3 cycles. In all other cases, absolute addressing takes 4 cycles, 

3 to fetch the full instruction including the effective address, the fourth to 

perform the memory transfer called for in the instruction. 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1    PC PC + 1 OP CODE Fetch OP CODE 

2    PC + 1 PC + 2 ADL Fetch ADL, 
Decode OP CODE 

3    PC + 2 PC + 3 ADH Fetch ADH 
Hold ADL 

4    ADH, ADL PC + 3 DATA Fetch DATA 

5    PC + 3 PC + 4 New 
OP CODE 

Fetch New 
OP CODE, 
Execute Old 
OP CODE 
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Absolute addressing always takes 3 bytes of program memory; 1 for the 
OP CODE, 1 for the address low, 1 for the address high, plus 1 byte of 
data memory (such as RAM) that is pointed to by the effective address. 
 
Instructions which have absolute addressing capability include ADC, AND, 
ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR, 
ORA, ROL, SEC, STA, STX, STY. 
 

5.6 ZERO PAGE ADDRESSING 

 
Zero page addressing is a 2-byte instruction. The first byte contains the 
OP CODE, while the second byte contains the effective address in page 
zero of memory. 
 
As seen in absolute addressing, the ability to address anywhere in the 
65K memory space costs 3 bytes of program space, plus a minimum of 4 
cycles to perform address operations. In order to allow the user a 
shortening of both memory space and execution time, particularly when 
dealing with working registers and intermediate values, the MCS650X 
microprocessor family has a special addressing mode that assumes 
automatically the effective address high (ADH) to be in the lowest page 
of memory. In order to understand the page concept one should think of 
each of the various memory addresses as comprising a consecutive block 
of 256 locations which have an independent high order address 
associated with that block. Each block is called a page. Other than for 
zero page and for calculating indexed addresses which will be covered 
in the following sections, the microprocessor pays little attention to the 
page concept. 
 
The microprocessor assumes that the high order byte of the effective 
address for instructions which contain OP CODES which indicate the zero 
page addressing option is all 0's (ADH = 00, hexadecimal). This allows 
the following sequence to occur. 
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Example 5.6: Illustration of zero page addressing 

 
On the first cycle, the microprocessor puts out the program counter, reads 
the OP CODE and increments the program counter. On the second cycle, 
the microprocessor puts out the program counter, reads the effective 
address low, interprets the OP CODE and increments the program 
counter. So far, the operations are identical to those described in the 
absolute addressing mode. However, by the end of the second cycle, the 
microprocessor has decoded the fact that this is a zero page operation 
and on the next cycle, it outputs address 00, as the effective address 
high, along with the address low that it just fetched and then either reads 
or writes memory at that location, depending on the OP CODE. 
 
The advantage of zero page addressing is that it takes only 2 bytes, 1 
for the OP CODE and 1 for the effective address low; and only 3 cycles, 
1 to fetch the OP CODE, 1 to fetch the address low, and 1 to fetch the 
data, as opposed to absolute addressing which takes 3 bytes and 4 
cycles. 
 
In order to make most effective utilization of this concept, the user should 
organize his memory so that he is keeping his most frequently accessed 
RAM values in the memory locations between 0 and 255. If one organizes 
the zero page of memory properly, including moving data into these 
locations for longer loops, significant shortening of program code and 
execution time can be obtained. 
 
The concept of zero page is so important that the various cross assemblers 
have error notations which indicate when improper use of this space is 
made. If one's coding is organized according to the guidelines shown in 
Section 5.2.2, one normally will find working storage located in values 
from 0 to 255. This is an important aspect of the discipline known as 
“memory management.” 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1    PC PC + 1 OP CODE Fetch OP CODE 

2    PC + 1 PC + 2 ADL Fetch ADL, 
Decode OP CODE 

3    00, ADL PC + 2 DATA Fetch DATA 

4    PC + 2 PC + 3 New 
OP CODE 

Fetch New 
OP CODE, 
Execute Old 
OP CODE 
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Once the pattern of coding for the MCS650X, which considers working 
storage or registers in the zero page, becomes a habit, one finds that in 
most control applications, all of the working registers will take advantage 
of this programming and the associated time reduction without any 
special effort on the user’s part. 
 
Instructions which allow zero page addressing include ADC, AND, ASL, 
BIT, CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, ROL, SBC, 
STA, STX, STY. 
 

5.7 RELATIVE ADDRESSING 
 
As discussed in Section 4.1, all of the branch operations in the 
microprocessor use the concept of relative addressing. In example 5.7, it 
is seen that for the case of the straightforward branch in which the branch 
is not taken, on the first program count cycle, the microprocessor puts out 
program counter as an address, fetches the OP CODE and finishes the 
previous operation. During the second cycle, the program counter is put 
on the address bus, picking up the relative offset. Internally, the 
microprocessor is decoding the OP CODE to determine that it is a branch 
instruction. 
 
Example 5.7: Illustration of relative addressing branch not taken  

 
This is only the second cycle of an internal operation; therefore, the 
microprocessor may be storing a computed value from the previous 
instruction at the same time it is finishing interpreting the present 
instruction. It is while doing the store operation that the flags in the 
machine get physically set; therefore, the microprocessor allows the 

Cycle Address Bus Data Bus 
External 
Operation 

Internal 
Operation 

     
1 0100 OP CODE Fetch 

OP CODE 
Finish Previous Operation, 
Increment Program 
Counter to 0101 

2 0101 Offset Fetch 
Offset 

Interpret Instruction, 
Increment Program 
Counter to 0102 

3 0102 Next 
OP CODE 

Fetch Next 
OP CODE 

Check Flags, Increment 
Program Counter to 
0103 
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program counter to go 1 more cycle to allow itself time to determine the 
value of the flags. For example, if the previous instruction is ADC, the 
flags will not get set until the cycle in which the offset value is fetched. 
 
During the third cycle, the microprocessor puts the incremented PC onto 
the address bus, fetches the next OP CODE and checks the flag in order 
to decide whether or not the program counter value that is going out is 
correct and that the branch is not going to be taken. Therefore, an 
additional type of pipeline, in this case fetching the next OP CODE in a 
branch sequence, accomplishes the implementation of a branch relative 
with no branch being taken. This requires 2 cycles. One cycle fetches the 
branch OP CODE and 1 cycle fetches the next operation, the relative 
offset. The second fetch is effectively ignored by virtue of the fact that 
the branch is not taken, so the program counter location has already been 
incremented and the next OP CODE has already been fetched by the 
microprocessor. 
 
If in the above example it is assumed that the flag is set such that the 
branch is taken and the relative offset is +50, the microprocessor takes 
a third cycle to perform the branch operation. 
 
Example 5.8: Illustration of relative addressing branch positive taken, 
  no crossing of page boundaries 

 
In Example 5.8, on the first cycle, a branch OP CODE is fetched while the 
previous operation is finished. On the second cycle, the offset is fetched 
while the branch instruction is being interpreted. On the third cycle, the 
microprocessor uses the adder to add the program count low to the offset 
and also checks the flags. Because the program count for the next OP 

Cycle Address Bus Data Bus 
External 
Operation 

Internal 
Operation 

     
1 0100 OP CODE Fetch 

OP CODE 
Finish Previous Operation, 
Increment Program 
Counter to 0101 

2 0101 +50 Fetch 
Offset 

Interpret Instruction, 
Increment Program 
Counter to 0102 

3 0102 Next 
OP CODE 

Fetch Next 
OP CODE 

Check Flags, Add 
Relative to PCL, Increment 
Program Counter to 
0103 

4 0152 Next 
OP CODE 

Fetch Next 
OP CODE 

Transfer Results to 
PCL, Increment Program 
Counter to 0153 
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CODE in program sequence is already in the program counter and is 
being incremented, the microprocessor can allow the incrementation 
process to continue. If the value for the next instruction is indicated 
because the flag is not set, then the microprocessor loads the next OP 
CODE and the add of the program counter low to the offset value, is 
ignored as it was in the previous example. 
 
If during the third cycle the flag is found to be the correct value for a 

branch, the OP CODE that has been fetched during this cycle is ignored. 

The microprocessor then updates the program counter with the results 

from the add operation, puts that value out on the address bus which 

fetches a new OP CODE. 

 

This gives the effect of a 3-cycle branch. Thus it can be seen that in a 

case where the branch is not taken, the microprocessor has an effective 

2-cycle branch, i.e., 2 memory references. In the case when the branch is 

taken, the branch takes 3 cycles as long as the relative value does not 

force an update to the program counter high. In other words, 3 cycles are 

required if the page boundary is not crossed (recall the discussion of the 

“page” concept in Section 5.0). If in the above example the branch was 

back from address 0102 fifty locations, as opposed to +50 locations, the 

following result would occur: 

 
Example 5.9: Illustration of relative addressing – branch negative 
  taken, crossing of page boundary  

 

Cycle Address Bus Data Bus 
External 
Operation 

Internal 
Operation 

     
1 0100 OP CODE Fetch 

OP CODE 
Finish Previous 
Instruction 

2 0101 –50 Fetch 
Offset 

Interpret Instruction 

3 0102 Next 
OP CODE 

Fetch Next 
OP CODE 

Check Flags, Add 
Relative to PCL. 

4 01B2 Discarded 
DATA 

Fetch Discarded 
DATA 

Store Adder in PCL and 
Subtract 1 from PCH 

5 00B2 Next 
OP CODE 

Fetch Next 
OP CODE 

Put Out New PCH and 
Increment PC to 00B3 



 

66 

In this example, the adder is used to perform the arithmetic operation, 
and the adder can do only the 8 bits of addition at a time. The minus 
branch crosses back over the page boundary, therefore an intermediate 
result is developed of 01B2 which has no intrinsic value because of the 
borrow which now has to be reflected into the program counter high. 
Since this example displays both a negative offset and the crossing of a 
page boundary, additional explanation is in order. 
 
The value to which the offset will he added is 0102 (hexadecimal). The 
offset itself is –50 (hexadecimal). 
 
Subtract low order byte: 

 02
HEX = 0000 0010 

 50
HEX = 0101 0000 

Take two’s compliment of 50: 

 50  = 1010 1111 
   Add 1                1 

       –50  = 1011 0000 
      
   Add 2 0000 0010 
       –50   1011 0000 

Carry   =  0   1011 0010 
    B 2 
 
Up to this point, the PCH has not been affected; therefore the value on 
the address bus is 01B2. 
 
The Carry = 0, indicating a borrow. 
 
Subtract high order byte: 

 01HEX = 0000 0001 
 00HEX = 0000 0000 

Take two’s compliment of 00: 

 00HEX = 1111 1111 
   Add Carry   =           0 

       –00HEX = 1111 1111 
      
   Add 01 0000 0001 
       –00   1111 1111 

Carry   =  1   0000 0000 
    0 0 

 
The presence of the Carry indicates no borrow, hence a positive result. 
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At this time, after the arithmetic operation on both bytes of the P.C., the 
address bus will be: 00B2. 
 
The microprocessor does put out on the address line the intermediate 
results (01B2), thereby reading a location within the page it was currently 
working in, the value of which is ignored. It then subtracts 1, or if this was 
a branch forward to the next page, the microprocessor would add 1 to 
program counter high in this fourth cycle. In the fifth cycle, the 
microprocessor will recognize that it has the correct new program counter 
high and program counter low and is able to start a new instruction 
operation, thereby giving an effective length to the branch operation 
when a page crossing is encountered of 4 cycles. 
 
It should be noted that all of the above operations are automatic; once 
a branch instruction is encountered, the following relative value is 
calculated and put into the memory location after the branch instruction. 
 
We can see, however, that it is possible to control the execution time of 
a branch. This is important for counting or estimating times of operations. 
For counting purposes, the following applies: 
 
 If a branch is normally not taken, assume 2 cycles for the 
 branch. 
 
 If the branch is normally taken but it is not across the page 
 boundary, assume 3 cycles for the branch. 
 
 If the branch is over a page boundary, then assume 4 cycles for 
 the branch. 
 
In loops which are repeated many times, one can assume some type of 
statistical factor between 3 and 2, or 4 and 2, depending on the 
probability of taking the branch versus not taking it. 
 
In order to indicate to the programmer when the 4-cycle branch is taken 
as opposed to the 3-cycle branch, the various assemblers flag all branch 
operations which cross page boundaries with a warning message and if 
timing is important, the user can perhaps relocate his program in such a 
way that the branch does not cross page boundary. 
 
It should be re-emphasized that other than for timing purposes, page 
boundary crossings can be ignored by the programmer. 
 
To summarize, the relative addressing always takes 2 bytes. 1 for the 
OP CODE and 1 for the offset. 
 



 

68 

The execution time is as follows: 
 

Branch with Not Taking the Branch – 2 cycles 

Branch When the Branch is Taken but 
No Page Crossing 

– 3 cycles 

Branch When the Branch is Taken with 
a Page Crossing 

– 4 cycles 

 
Only branch instructions have relative addressing. The branch instructions 
are: BCC, BEQ, BIT, BMI, BNE, BPL, BSC, BVC, BVS. For a more detailed 
explanation of relative offset calculations the reader is referred to 
Appendix H. 
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CHAPTER 6 
 
 

INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS 
 
 
 
 
 
 
 

6.0 GENERAL CONCEPT OF INDEXING 

 
In previous sections techniques for using the program counter to address 
memory locations after the operation code to develop the address for a 
particular operation have been discussed. Other than cases when the 
programmer directly changes the program memory, it can be considered 
that the addressing modes discussed up until now are fixed or directed 
addresses and each has the relative merits discussed under each 
individual section. However, a more powerful concept of addressing is 
that of computed addressing. There are basically two types of computed 
addressing; indexed addressing and indirect addressing. 
 
Indexed addressing uses an address which is computed by means of 
modifying the address data accessed by the program counter with an 
internal register called an index register. 
 
Indirect addressing uses a computed and stored address which is 
accessed by an indirect pointer in the programming sequence. 
 
In the MCS650X product family, both of these modes are used and 
combinations of them are available. 
 
Before undertaking the more difficult concepts of indirect addressing the 
concept of indexed instructions will be developed. 
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In order to move five bytes of memory from an address contained in 
FIELD 1 to another set of addresses, starting with FIELD 2, the following 
program could be written: 
 
Example 6.1: Moving Five Bytes of Data with Straight Line Code 
  
LABEL INSTRUCTION OPERAND  COMMENTS 

START LDA FIELD 1  
Move First Value 

 STA FIELD 2 
 LDA FIELD 1 + 1  

Move Second Value 
 STA FIELD 2 + 1 
 LDA FIELD 1 + 2  

Move Third Value 
 STA FIELD 2 + 2 
 LDA FIELD 1 + 3  

Move Fourth Value 
 STA FIELD 2 + 3 
 LDA FIELD 1 + 4  

Move Fifth Value 
 STA FIELD 2 + 4 

 
In this example, data is fetched from the first memory location in FIELD 1, 
as addressed by the next one or two bytes in program memory, stored 
temporarily in A and then written into the first memory location in FIELD 
2, also addressed by the next one or two bytes in program memory. This 
sequence is repeated, with only the memory addresses changing, until all 
the data has been transferred. This type of programming is called 
straight line programming because each repetitive operation is a 
separate group of instructions listed in sequence or straight line form in 
program memory. This is necessary even though the instruction OP CODES 
are identical for each memory transfer operation because the specific 
memory addresses are different and require a different code to be 
written into the program memory for each transfer. 
 
It takes a total of 10 instructions to accomplish the move when it is 
implemented this way. It should be noted that it is not indicated whether 
or not FIELD 1 and FIELD 2 are Zero Page addresses or Absolute 
addresses. 
 
If they were Zero Page addresses, the total number of bytes consumed 
in solving the problem would be two bytes for each instruction and 
thereby requiring 20 bytes of memory; it both FIELD 1 and FIELD 2 were 
Absolute memory locations, each instruction would take 3 bytes and this 
program would require 30 bytes of program storage. 
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The Zero Page program would execute in three cycles per instruction or 

30 cycles and the Absolute location version would execute in four cycles 

per instruction or 40 cycles. 

 

A new concept has been introduced in this example, that of symbolic 

notation rather than actual locations for the instructions. 

 

The form that this short program is written in uses symbolic addressing in 

which the address of the beginning of the program has a name START. 

Symbolic representations of addresses such as “START” are referred to 

as labels. The addresses in the two address field used in this example 

have also been given names, the first address of the first field is called 

FIELD 1; the first address of the second field is called FIELD 2. Each 

additional address in the fields has been given a number which is 

referenced to the first number; for example, the third byte in FIELD 1 is 

FIELD 1 + 2. All of these concepts are implemented to simplify the ease 

of writing a program because the user does not have to worry about the 

locations of FIELD 1 and FIELD 2 until after analyzing the memory needs 

of the whole program. Symbolic notation also results in a more readable 

program. 

 

Translation from symbolic form instructions and addresses into actual 

numerical OP CODES and addresses is done by a program called a 

symbolic assembler. Several different versions of symbolic assemblers 

and cross assemblers are available for the MCS650X product family. 

Symbolic notation will be used throughout the remainder of this text 

because of its ease of understanding and because individual byte 

addresses are unnecessary although for an explanation of a particular 

mode, the byte representation may be used. 

 

In this example, only direct addresses were used. A program to reduce 

the number of bytes required to move the five values follows: 
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Flow Chart – Moving Five Bytes of Data with Loop 

FIGURE 6.1 
 
 
Example 6.2 is a program listing that corresponds to the flow chart: 
 
Example 6.2: Moving Five Bytes of Data with Loop 
 
LABEL INSTRUCTION OPERAND  COMMENTS 
INITIALIZE CLC    
START LDA FIELD 1   
OTHER STA FIELD 2 Move Loop 
 LDA START + 1   
 ADC #1  
 STA START + 1 Modify Move Values 
 LDA OTHER + 1  
 ADC #1  
 STA OTHER + 1  
 CMP #FIELD 2 + 5  Check for End 
 BNE START   

 
NOTE:  For ease of reading, labels have been written in the form 
 “FIELD 1”. This is incorrect format for use in the various symbolic 
 assemblers. "FIELD 1" must be written “FIELD1” when coding for 
 assembler formats. 
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Assuming Zero Page, direct addressing, Example 6.3 is written below with 
one byte per line just as it would appear in program memory. This will 
provide a more detailed description of Example 6.2. 
 
Example 6.3: Coded Detail of Moving Fields with Loop 
 

LABEL CODE NAMES COMMENTS 
 CLC Clear Carry 
START LDA (FIELD 1)          A 
 FIELD 1  
OTHER STA A          (FIELD 2) 
 FIELD 2  
 LDA From Address          A 
 START + 1  
 ADC A + 1          A 
 1  
 STA A          From Address 
 START + 1  
 LDA To Address          A 
 OTHER + 1  
 ADC A + 1          A 
 1  
 STA A + To Address 
 OTHER + 1  
 CMP A – ORIGINAL FIELD 2 + 5 
 ORIGINAL FIELD 2 + 5  
 BNE If not, loop to START 
 START  

 
In this example, the program is modifying the addresses of one load 

instruction and one store instruction rather than writing ten instructions to 

move five bytes of data and fifty instructions to move twenty-five bytes 

of data. 

 

The address of the Load A instruction is located in memory at START + 1 

and the Store instruction at OTHER + 1. In order to perform this operation, 

the address must be modified once for each move operation until all of 

the data is moved. 

 

Checking for the end of the moves is accomplished by checking the results 

of the address modification to determine if the address exceeds the end 

of the second field. When it does, the routine is complete. 
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If a hundred values were to be moved this program would remain 20 

bytes long, whereas the solution to the first problem would require a 

program of 200 instructions. 

 

The type of coding used in this example is called a “loop”. Although the 

program loop in this case requires as many bytes as the original program, 

more values could be moved without increasing the length of the program. 

The greater the number of repetitive operations that are to be 

accomplished, the greater the advantage of the loop type program over 

straight line programming. 

 

Important Note: The execution time required to move the five values is 

significantly longer using the loop program than the straight line program. 

In the straight line program, if a Zero Page operation is assumed, the 

time to perform the total move is 30 cycles. Using the loop program, the 

execution time to move five values is five times through the entire loop, 

which takes 25 cycles. Therefore the time to move five values is 125 

cycles. 

 

While loops have an advantage in coding space efficiency, all loops cost 

time. If the programmer has a problem that is extremely time dependent, 

taking the loop out and going to straight line programming, even though 

it is extremely inefficient in terms of its utilization of memory, will often 

solve the timing problem. 

 

The straight line programming technique becomes very useful in some 

control applications. However, it is not recommended as a standard 

technique but should only be used when there are extreme timing 

problems. Using loops will normally save a significant number of bytes 

but they will always take more time. 

 

The technique used in the loop program example has two major 

problems: 

 

1. The necessity to modify program memory. This should be 

 avoided to take advantage of the ability to put programs into 

 read only memory with the corresponding savings in hardware 

 costs. 
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2. Although this is the simplist form of computed addressing, less 

 program bytes would be necessary than the more sophisticated 

 form of program shown in the following flow chart: 

 

 
 

Moving Five Bytes of Data with Counter 

FIGURE 6.2 
 
 
 
In the MCS650X microprocessor family, the counter is called an index 

register. It is an 8-bit register which is loaded from memory and has the 

ability to have one added to it by an increment instruction (INX, INY) and 

can be compared directly to memory using the compare index instruction 

(CPX, CPY). Example 6.4 shows the program listing for the flow chart of 

Figure 6.2. 
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Example 6.4: Moving Five Bytes of Data with Index Registers 
 

BYTES LABEL INSTRUCTION OPERAND COMMENTS 
2  LDX 0 Load Index with Zero 
3 LOOP LDA FIELD 1,X  
3  STA FIELD 2,X  
1  INX  Increment Count 
2  CPX 5 Compare for End 
2  BNE LOOP  

  13 for Absolute 
 
In this example, index register X is used as an index and as a counter. It 

is initialized to zero. Data is fetched from memory at the address “FIELD 

1 plus the value of register X”, and placed in A. The data is then written 

from A to memory at the address “FIELD 2 plus the value of register X”. 

Register X is incremented by one and compared with 3 in order to 

determine if all five data values have been transferred. If not the 

program loops back to LOOP. In this example, “FIELD 1” is called the 

“Base Address” which is the address to which indexing is referenced. 

 

This only takes 11 or 13 bytes, depending on whether or not the field is 

in Page Zero or in absolute memory. It still takes 13 or 15 cycles per byte 

moved, again confirming that loops are excellent for coding space but 

not for execution time. 

 

It can be seen from the example that there are basically two criteria for 

an index register; one, that it be a register which is easily incremented, 

compared, loaded, and stored, and two, that in a single instruction one 

can specify both the Base Address and the value of X. 

 

In the MCS650X microprocessor, the way that the indexed instruction is 

symbolically represented is OP CODE, Address, X. This indicates to the 

symbolic assembler that an instruction OP CODE should be picked, which 

should specify either the absolute address modified by the content of 

index X register or Zero Page address modified by the content of index 

X register. 
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In performing these operations, the microprocessor fetches the instruction 

OP CODE as previously defined, and fetches the address, modifies the 

address from the memory by adding the index register to it prior to 

loading or storing the value of memory. 

 

The index register is a counter. As discussed previously, one of the 

advantages of the flags in the microprocessor is that a value can be 

modified and its results tested. Assume the last example is modified so 

that instead of moving the first value in FIELD 1 to the first value in FIELD 

2, the last value in FIELD 1 is moved first to the last value in FIELD 2, then 

the next to the last value, etc. and finally the first value. With the index 

register preloaded with 5 and using a decrement instruction the contents 

of the index register would end at zero after the 5 fields of data were 

transferred. The zero indicates that the number of times through the loop 

is correct and the loop exited by use of the zero test. The program listing 

for this modification is shown in Example 6.5: 

 
Example 6.5: Moving Five Bytes of Data by Decrementing the Index 
  Register 
 

LABEL INSTRUCTION OPERAND 

 LDX 5 

LOOP LDA FIELD 1–1,X 

 STA FIELD 2–1,X 

 DEX  

 BNE LOOP 

 
In this example, Index Register X is again used as an Address Counter 

but it will count backwards. It is initialized to five for this example. Data 

is fetched from memory at the address “FIELD 1 plus the value of Register 

X” and placed in A. The data is then written from A to memory at the 

address “FIELD 2 plus the value of Register X.” Register X is decremented 

by one. If the decremented value is not zero, as determined by a Branch 

on Zero instruction, the program loops back to LOOP 

 

The loop has been decreased to 9 or 11 bytes and the execution time 

per byte has been decreased from 15 cycles to 13 cycles per value which 
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shows the advantage of using the flag setting of the decrement index 

instruction. 

 
The two index registers, X and Y, can now be added to the system block 
diagram as in Figure 6.3 
 
 
 

 
 

 
Partial Block Diagram of MCS650X Including Index Registers 

FIGURE 6.3 
 
 

 

 

 

 

 

 

Each of the index registers is 8 bits long and is loaded and stored from 

memory, using techniques similar to the accumulator. Because of this 

ability, they can be considered as auxiliary channels to flow data through 

the microprocessor. However, their primary use is in being added to 

addresses fetched from memory to form a modified effective address, 

as described previously. Both index registers have the ability to be 

compared to memory (CPX, CPY) and to be incremented (INX, INY) and 

decremented (DEX, DEY). 
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Because of OP CODE limitations, X and Y have slightly different uses. X 
is a little more flexible because it has Zero Page operations which Y does 
not have with exception of LDX and STX. Aside from which modes they 
modify, the registers are autonomous, independent and of equal value. 
 
 

6.1 ABSOLUTE INDEXED 
 
Absolute indexed address is absolute addressing with an index register 
added to the absolute address. The sequences that occur for indexed 
absolute addressing without page crossing are as follows: 
 
Example 6.6: Absolute Indexed; with No Page Crossing 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Increment PC to 101, 
Finish Previous 
Instruction 

2 0101 BAL Fetch BAL Increment PC to 102, 
Interpret Instruction 

3 0102 BAH Fetch BAH Increment PC to 103, 
Calculate BAL+X 

4 BAH, BAL+X OPERAND Put Out 
Effective 
Address 

 

5 0103 Next OP 
CODE 

Fetch Next 
OP CODE 

Finish Operations 

 
 
BAL and BAH refer to the low and high order bytes of the base address, 

respectively. While the index X was used in Example 6.7, the index Y is 

equally applicable. 

 
If a page is not crossed, the results of the address low + X does not cause 

a carry. The processor is able to pipeline the addition of the 8-bit index 

register to the lower byte of the base address (BAL) and not suffer any 

time degradation for absolute indexed addressing over straight absolute 

addressing. In other words, while BAH is being fetched, the add of X to 

BAL occurs. Both addressing modes require four cycles with the only 
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difference being that X or Y must be set at a known value and the OP 

CODE must indicate an index X or Y. 

 

The second possibility is that when the index register is added to the 

address low of the base address that the resultant address is in the next 

page. This is illustrated in Example 6.7. 

 

 
Example 6.7: Absolute Indexed; with Page Crossing 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation Increment 
PC to 101 

2 0101 BAL Fetch BAL Interpret Instruction 
Increment PC to 102 

3 0102 BAH Fetch BAH Add BAL + Index 
Increment PC to 103 

4 BAH, BAL+X DATA 
(ignore) 

Fetch DATA 
(Data is ignored) 

Add BAH + Carry 

5 BAH+1, 
BAL+X 

DATA Fetch DATA  

6 0103 Next OP 
CODE 

Fetch Next 
OP CODE 

Finish Operations 

 
 
The most substantial difference between the page crossing operation and 

no page crossing is that during the fourth cycle, the address high and the 

calculated address low is put out, thereby incorrectly addressing the 

same page as the base address. This operation is carried on in parallel 

with the adding of the carry to the address high. During the fourth cycle 

the address high plus the carry from the adder is put on the address bus, 

moving the operation to the next page. Thus there are two effects from 

the page crossing. 1. The addressing of a false address. This is similar to 

what happens in a branch relative during a page crossing. 2. The 

operation takes one additional cycle while the new address high is 

calculated. As with the branch relative this page crossing occurs 
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independently of programmer action and there is no penalty in memory 

for having crossed the page boundary. It is possible for the programmer 

to predict a page crossing by the knowing the value of the base address 

and the maximum offset value in the index register. If timing is of concern, 

the base address can be adjusted so that the address field is always in 

one page. 

 

As with absolute addressing, absolute indexed is the most general form 

of indexing. It is possible to do absolute indexed modified by X, and 

absolute indexed modified by Y. Instructions which allow absolute 

indexed by X are ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, 

ORA, ROL, SBC and STA. 

 

The instructions which allow indexed absolute by Y are ADC, AND, CMP, 

EOR, LDA, LDX, ORA, SBC and STA. 

 

 

 

 

6.2 ZERO PAGE INDEXED 

 

As with non-computed addressing, there is a memory use advantage to 

the short-cut of Zero Page addressing. Except in LDX and STX instructions 

which can be modified by Y, Zero Page is only available modified by X. 

If the base address plus X exceeds the value that can be stored in a 

single byte, no carry is generated, therefore there is no page crossing 

phenomena. A wrap-around will occur within Page Zero. The following 

example illustrates the internal operations of Zero Page indexing. 
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Example 6.8: Illustration of Zero Page Indexing 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation, 
0101 → PC 

2 0101 BAL Fetch Base 
Address Low 
(BAL) 

Interpret Instruction, 
0102 → PC 

3 00,BAL DATA 
(Dis- 
carded) 

Fetch 
Discarded 
DATA 

Add: BAL + X 

4 00,BAL+X DATA Fetch DATA 
Address 

 

5 0102 Next OP 
CODE 

Fetch Next 
OP CODE 

Finish Operation 

 
As can be seen from the example, there is no time savings of Zero Page 

indexing over absolute indexing without page crossing. In the case of the 

indexed absolute during cycle 3 the address high is being fetched at the 

same time as the addition of the index to address low. In the case of the 

Zero Page, there is no opportunity for this type of overlap; therefore, 

indexed Zero Page instructions take one cycle longer than non-indexed 

instructions. 

 

In both Zero Page indexed and absolute indexed with a page crossing, 

there are incorrect, addresses calculated. Provisions have been made to 

make certain that, only a READ operation occurs during this time. Memory 

modifying operations such as STORE, SHIFT, ROTATE, etc. have all been 

delayed until the correct address is available, thereby prohibiting any 

possibility of writing data in an incorrect location and destroying the 

previous data in that location. 

 

As has been previously stated, there is no carry out of the Zero Page 

operation. 00 is forced into address high under all circumstances in cycle 

4. For example, if the index register containing a value of 10 is to be 

added to base address containing a value of F7, the following operation 

would occur: 
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Example 6.9: Demonstrating the Wrap-Around  
 

Cycle Address Bus Internal Operation 

3 00F7 F7 + 10 

4 0007  
 
 
This indicated the wrap-around effect that occurs with Zero Page 

indexing with page crossing. This wrap-around does not increase the 

cycle time over that shown in the previous example. 

 

Only index X is allowed as a modifier in Zero Page. Instructions which 

have this feature include ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, 

LSR, ORA, ROL, SBC, STA and STY. Note that index Y is allowed in the 

instructions LDX and STX. 

 

6.3 INDIRECT ADDRESSING 

 
In solving a certain class of problems, it is sometimes necessary to have 

an address which is a truly computed value, not just a base address with 

some type of offset, but a value which is calculated or sometimes 

obtained as a group of addresses. In order to implement this type of 

indexing or addressing, the use of indirect addressing has been 

introduced. 

 

In the MCS650X family indirect operations have a special form. The basic 

form of the indirect addressing is that of an instruction consisting of an 

OP CODE followed by a Zero Page address. The microprocessor obtains 

the effective address by picking up from the Zero Page address the 

effective address of the operation. The indirect addressing operation is 

much the same as absolute addressing except indirect addressing uses a 

Zero Page addressing operation to indirectly access the effective 

address. In the case of absolute addressing the value in the program 

counter is used as the address to pick up the effective address low, one 

is added to the program counter which is used to pick up the effective 

address high. In the case of indirect addressing, the next value after the 

OP CODE, as addressed with the program counter, is used as a pointer 

to address the effective address low in the zero page. The pointer is then 
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incremented by one with the effective address high fetched from the next 

memory location. The next cycle places the effective address high (ADH) 

and effective address low (ADL) on the address bus to fetch the data. An 

illustration of this is shown in Figure 6.4. 

 

 

 
 
 

Indirect Addressing – Pictorial Drawing 

FIGURE 6.4 
  
 
 
 
 
 
 
 
 
 
 
 
The address following the instruction is really the address of an address, 

or “indirect” address. The indirect address is represented by IAL in the 

figure. 

 

A more detailed definition of indirect addressing is included in the 

appendix. 
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Although the MCS650X microprocessor family has indirect operations, it 

has no simple indirect addressing such as described above. There are two 

modes of indirect addressing in the MCS650X microprocessor family: 

1.) indexed indirect and 2.) indirect indexed. 

 

 

 

6.4 INDEXED INDIRECT ADDRESSING 
 

The major use of indexed indirect is in picking up data from a table or 

list of addresses to perform an operation. Examples where indexed 

indirect is applicable is in polling I/O devices or performing string or 

multiple string operations. Indexed indirect addressing uses the index 

register X. Instead of performing the indirect as shown in the Figure 6.4, 

the index register X is added to the Zero Page address, thereby allowing 

varying address for the indirect pointer. The operation and timing of the 

indexed indirect addressing is shown in Figure 6.5. 

 

 
 

Indexed Indirect Addressing 

FIGURE 6.5 
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Example 6.10: Illustration of Indexed Indirect Addressing 
  

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation, 
0101 → PC 

2 0101 BAL Fetch BAL Interpret Instruction, 
0102 → PC 

3 00,BAL Data 
(Dis- 
carded) 

Fetch 
Discarded 
Data 

Add BAL + X 

4 00,BAL+X ADL Fetch ADL Add 1 to BAL + X 

5 00,BAL+X+1 ADH Fetch ADH Hold ADH 

6 ADH, ADL DATA Fetch DATA  

7 0102 Next OP 
CODE 

Fetch Next OP 
CODE 

Finish Operation 
0103 → PC 

 
 
One of the advantages of this type of indexing is that a 16-bit address 

can be fetched with only two bytes of memory, the byte that contains the 

OP CODE and the byte that contains the indirect pointer. It does require, 

however, that there be a table of addresses kept in a read/write 

memory which is more expensive than having it in read only memory. 

Therefore, this approach is normally reserved for applications where use 

of indexed indirect results in significant coding or throughput 

improvement or where the address being fetched is a variable computed 

address. 

 

It is also obvious from the example that the user pays a minor time 

penalty for this form of addressing in that indexed indirect always takes 

six cycles to fetch a single operand which is 25% more than an absolute 

address and 50% more than a Zero Page reference to an operand. As 

in the Zero Page indexed, the operation in cycles three and four are 

located in Zero Page and there is no ability to carry over into the next 

page. It is possible to develop a value of the index plus the base address 

where the result exceeded 255, in this case the address put out is a wrap-

around to the low part of the Page Zero. 
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Instructions which allow the use of indexed indirect are ADC, AND, CMP,    

EOR, LDA, ORA, SBC, STA. 

 

6.5 INDIRECT INDEXED ADDRESSING 

 

The indirect indexed instruction combines a feature of indirect addressing 

and a capability of indexing. The usefulness of this instruction is primarily 

for those operations in which one of several values could be used as part 

of a subroutine. By having an indirect pointer to the base operation and 

by using the index register Y in the normal counter type form, one can 

have the advantages of an address that points anywhere in memory, 

combined with the advantages of the counter offset capability of the 

index register. 

 

Figure 6.6 illustrates the indirect indexed concept in flow form while 

Example 6.11 indicates the internal operation of a non-page roll-over of 

an indirect index. 

 

 
 
 

Indirect Indexed Addressing 

FIGURE 6.6 
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Example 6.11: Indirect Indexed Addressing (No Page Crossing) 
 
 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation, 
0101 → PC 

2 0101 IAL Fetch IAL Interpret Instruction, 
0102 → PC 

3 00,IAL BAL Fetch BAL Add 1 to IAL 

4 00,IAL+1 BAH Fetch BAH Add BAL + Y 

5 BAH,BAL+Y DATA Fetch Operand  

6 0102 Next OP 
CODE 

Fetch Next OP 
CODE 

Finish Operation 
0103 → PC 

 
 

 

 

 

 

The indirect index still requires two bytes of program storage, one for 

the OP CODE, one for the indirect pointer. Once beyond the indirect, the 

indexing of the indirect memory location is just the same as though it was 

an absolute indexed operation in the sense that if there is no page 

crossing, pipelining occurs in the adding of the index register Y to address 

low while fetching address high, and therefore, the non-page crossing 

solution is one cycle shorter than the indexed indirect. In Example 6.12 it 

is seen that the page crossing problem that occurs with absolute indexed 

page crossing also occurs with indirect indexed addressing. 
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Example 6.12: Indirect Indexed Addressing (with Page Crossing) 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation, 
0101 → PC 

2 0101 IAL Fetch IAL Interpret Instruction, 
0102 → PC 

3 00,IAL BAL Fetch BAL Add 1 to IAL 

4 00,IAL+1 BAH Fetch BAH Add BAL + Y 

5 BAH,BAL+Y DATA (Dis-
carded) 

Fetch DATA 
(Discarded) 

Add 1 to BAH 

6 BAH+1 
BAL+Y 

DATA Fetch DATA  

7 0102 Next OP 
CODE 

Fetch Next OP 
CODE 

Finish Operation 
0103 → PC 

 
 
When there is a page crossing, the base address high and base address 

low plus Y are pointing to an incorrect location within a referenced page. 

However, it should be noted that the programmer has control of this 

incorrect reference in the sense that it is always pointing to the page of 

the base address. In one more cycle the correct address is referenced. As 

was true in the case of absolute indexed, the data at the incorrect 

address is only read. STA and the various read, modify, write memory 

commands all operate assuming that there will be a page crossing, take 

the extra cycle time to perform the add and carry and only perform a 

write on the sixth cycle rather than taking advantage of the five cycle 

short-cut which is available to read operations. This added cycle 

guarantees that a memory location will never be written into with 

incorrect data. 

 

Instructions which allow the use of indexed indirect are ADC, AND, CMP,    

EOR, LDA, ORA, SBC, STA. 
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In the following two examples can be seen a comparison between the use 

of absolute modified by Y and indirect indexed addressing. 

 

In these examples the same function is performed. Values from two 

memory locations are added and the result stored in a third memory 

location, assuming that there are several values to be added. The first 

example deals with known field locations. The second example, such as 

might be traditionally used in subroutines, deals with field locations that 

vary between routines. A two byte pointer for each routine using the 

subroutine is stored in Page Zero. The number of values to be added for 

each routine is also stored. 

 
Example 6.13: Absolute Indexed Add – Sample Program 
 

#Bytes Cycles Label Instruction Comments 

2 2 START LDY #COUNT–1 Set Y = End of FIELD 

3 4 LOOP LDA FIELD 1,Y Load Location 1 

3 4  ADC FIELD 2,Y Add Location 2 

3 4  STA FIELD 3,Y Store in Location 3 

1 2  DEY  

2 3  BPL LOOP Check for Less Than Zero 

14 19  Time for 10 Bytes = 171 Cycles 
 

Example 6.14: Indirect Indexed Add – Sample Program 
 

#Bytes Cycles Label Instruction Comments 

2 2 START LDY #COUNT–1 Set Y = End of FIELD 

2 5 LOOP LDA (PNT1), Y Load FIELD 1 Value 

2 5  ADC (PNT2), Y Add FIELD 2 Value 

2 5  STA (PNT3), Y Store FIELD 3 Value 

1 2  DEY  

2 3  BPL LOOP Check for Less Than Zero 

11 22  Time for 10 Bytes = 201 Cycles 
 
                 + 6 Bytes for Pointers 
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The “count” term in these examples represents the number of sets of 

values to be added and stored. Loading the index register with COUNT–

1 will allow a fall through the BPL instruction when computation on all set 

of values has been completed. 

 

There is a definite saving in program storage using indirect because it 

only requires two bytes for each indirect pointer, the OP CODE plus the 

pointer of the Page Zero location, whereas in the case of the absolute, it 

takes three bytes, the OP CODE, address low and address high. 

 

It is noted that there are six bytes of Page Zero memory used for pointers, 

two bytes for each pointer. The number of memory locations allocated to 

the problem are 17 for the indirect and 14 for the problem where the 

values are known. The execution time is longer in the indirect loop. Even 

though the increase in time for a single pass through the loop is only three 

cycles, if many values are to be transferred, it adds up. It is important to 

note that loops require time for setup but it is only used once. But in the 

loop itself, additional time is multiplied by the number of times the 

program goes through the loop; therefore, on problems where execution 

time is important, the time reduction effort should be placed on the loop. 

 

Even though the loop time is longer and the actual memory expended is 

greater for the indexed indirect add, it has the advantage of not 

requiring determination of the locations of FIELD 1, FIELD 2, and FIELD 3 

at the time the program was written as is necessary with absolute. 

 

An attempt to define problems to take advantage of this shorter memory 

and execution time by defining fields should be investigated first. 

However, in almost every program, the same operation must be 

performed several times. In those cases, it is sometimes more useful to 

define a subroutine and set the values that the subroutine will operate on 

as fields in memory. Pointers to these fields are placed in the Zero Page 

of memory and then the indexed indirect operation is used to perform 

the function. This is the primary use of the indexed indirect operation. 

 
 
 
 



 

92 

6.6 INDIRECT ABSOLUTE 

 

In the case of all of the indirect operations previously described, the 

indirect reference was always to a Page Zero location from which is 

picked up the effective address low and effective address high. There is 

an exception in the MCS650X microprocessor family for the jump 

instruction in which absolute indirect jumps are allowed. The use of the 

absolute indirect jump is best explained in the discussion on interrupts 

where the addressing mode and its capabilities are explained. 

 

6.7 APPLICATION OF INDEXES 

 

As has been developed in many of the previous examples, an index 

register has primary values as a modifier and as a counter. As a modifier 

to a base address operation, it allows the accessing of contiguous groups 

of data by simple modification of the index. This is the primary 

application of indexes and it is for this purpose they were created virtue 

of the fact that all of the MCS650X instructions have the base address in 

the instruction, or in the case of the indirect, in the pointer, a single index 

can usually be used to service an entire loop, because each of the many 

instructions in the loop normally are referring to the same relative value 

in each of the lists. An example is adding the third byte of a number to 

its corresponding third byte of another number, then storing the result in 

the memory location representing the third byte of the result; therefore, 

the index register only needs to contain three to accomplish all three of 

these offset functions. 

 

Some other microprocessors use internal registers as indirect pointers. The 

single register requirement is a significant advantage of the type of 

indexing done in the MCS650X. Even though the MCS650X has two 

indexes, more often than not, a single index will solve many of the 

problems because of the fact that the data is normally organized in 

corresponding fields. 

 

The second feature of the MCS650X type of indexing is that, if used 

properly, the index register also contains the count of the operations to 

be performed. 
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The examples have tried to show how to take advantage of that feature. 

There are two approaches to counting; forward counting and reverse 

counting. In forward counting, the data in memory can be organized such 

that the index register starts at zero and is added to on each successive 

operation. The disadvantage of this type of approach is that the compare 

index instruction, as used in Example 6.13 must be inserted into the loop 

in order to determine that the correct number of operations is completed. 

 

The reverse counting approach has been used in the latter examples. The 

data must be organized for reverse counting operation. The first value to 

be operated on is at the end of the FIELD, the next value is one memory 

location in front of that, etc. The advantage of this type of operation is 

that it takes advantage of the combined decrement and test capability 

of the processor. There are two ways to use the test. First there is the case 

where the actual number of operations to be performed is loaded into 

the index register such as was done in Example 6.13. In this case, the 

index contains the correct count but if added to the base directly, would 

be pointing to one value beyond the FIELD because the base address 

contains the first byte. Therefore, when using the actual count in the index 

register, one always references to the base address minus one. This is 

easily accomplished as shown in the examples. The cross assembler 

accepts symbolic references in the form of base address minus one, and 

the microprocessor very carefully performs the operation shown. 

 

The advantage of the actual count in the register is that the branch if not 

equal instruction (BNE) can be used because the value of the register goes 

to zero on the last operation. 

 

The second alternative is to load the counter with the count minus one as 

done in Example 6.14. In this case, the actual value of the base address 

is used in the offset. However, the branch back to loop now is a branch 

plus, remembering that the value in the index register will not go to minus 

(all ones) until we decrement past zero. 
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Values of count minus one through zero will all take the branch. It is only 

when attempting to reference less than the base address that the loop 

will be completed. 

 

Either approach gives minimum coding and only requires that the user 

develop a philosophy of always organizing his data with the first value 

at the end. In many cases, the operations such as MOVE can be 

performed even if the data is organized the other way. Experienced 

programmers find that this reverse counting form is actually more 

convenient to use and always results in minimum loop time and space. 

 

Although for most applications, the 8-bit index register allows simple 

count in offset operations, there are a few operations where the 256 

count that is available in the 8-bit register is not enough to perform the 

indexed operations. There are two solutions to this problem. First, to code 

the program with two sets of bases, that is duplicating the coding for the 

loop with two different address highs, each one a page apart. The 

second, more useful solution, is to go to indirect operations because the 

indirect pointer can be modified to allow an infinite indexed operation. 

An example of the move done under 256 and over 256 is shown in the 

following example: 

 
 
Example: 6.15: Move N Bytes (N<256) 
 

Number of 
Cycles 

Program 
Label 

Instruction 
Mnemonics 

OPERAND 
FIELD Comments 

2  LDX #BLOCK Setup 2 Cycles 

4 LOOP LDA FROM –1,X  

4  STA TO –1,X LOOP Time: 

2  DEX  13 Cycles 

3  BNE LOOP  

     

  Memory required: 11 Bytes 
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Example: 6.16: Move N Bytes (N>256) 
 
Number of 

Cycles 
Program 
Label 

Instruction 
Mnemonics 

OPERAND 
FIELD Comments 

2 MOVE LDA #FROML  

3  STA FRPOINT  
2  LDA #FROMH Move from address to 
3  STA FRPOINT+1 an indirect pointer 
     

2  LDA #TOL  
    Move A to address 

3  STA TOPOINT to an index pointer 
2  LDA #TOH  
3  STA TOPOINT+1  
2  LDX #BLOCKS Setup # of 256 blocks 
2  LDY #0 to move 
5 LOOP LDA (FRPOINT),Y Loop Time: 16 cycles/ 
6  STA (TOPOINT),Y byte. Move 256 bytes 
2  DEY   
3  BNE LOOP  
5 SPECIAL INC FRPOINT+1 Increase high 
5  INC TOPOINT+1 pointer 
2  DEX   
2  BMI OUT Check for last move 
3  BNE LOOP  
2  LDY #COUNT  
3  BNE LOOP Setup last move 

 OUT    

     

  Memory required: 40 Bytes 
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CHAPTER 7 

 
 

INDEX REGISTER INSTRUCTIONS 
 
 
 
 
 
 
 
The index registers can be treated as auxiliary-general purpose 
registers, having the added ability of being incremented and 
decremented because of the normal operations in which they are 
required to perform. 
 

7.0 LDX – LOAD INDEX REGISTER X FROM MEMORY 
 
Load the index register X from memory. 
 

The symbolic notation is M → X. 
 
LDX does not affect the C or V flags; sets Z if the value loaded was zero, 
otherwise resets it; sets N if the value loaded in bit 7 is a 1; otherwise N 
is reset, and affects only the X register. The addressing modes for LDX 
are Immediate; Absolute; Zero Page; Absolute Indexed by Y; and Zero 
Page Indexed by Y. 
 

7.1 LDY – LOAD INDEX REGISTER Y FROM MEMORY 

 
Load the index register Y from memory. 
 

The symbolic notation is M → Y. 
 
LDY does not affect the C or V flags, sets the N flag if the value loaded 
in bit 7 is a 1, otherwise resets N, sets Z flag if the loaded value is zero 
otherwise resets Z and only affects the Y register. The addressing modes 
for load Y are Immediate; Absolute; Zero Page; Zero Indexed by X, 
Absolute Indexed by X. 
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7.2 STX – STORE INDEX REGISTER X IN MEMORY 
 
Transfers value of X register to addressed memory location. 
 
The symbolic notation is X → M. 
 
No flags or registers in the microprocessor are affected by the store 
operation. The addressing modes for STX are Absolute, Zero Page, and 
Zero Page Indexed by Y. 
 

7.3 STY – STORE INDEX REGISTER Y IN MEMORY 
 
Transfer the value of the Y register to the addressed memory location. 
 
The symbolic notation is Y → M. 
 
STY does not affect any flags or registers in the microprocessor. The 
addressing modes for STY are Absolute; Zero Page; and Zero Page 
Indexed by X. 
 

7.4 INX – INCREMENT INDEX REGISTER X BY ONE 
 
Increment X adds 1 to the current value of the X register. This is an 8-bit 
increment which does not affect the carry operation, therefore, if the 
value of X before the increment was FF, the resulting value is 00. The 

symbolic notation is X + 1 → X. INX does not affect the carry or overflow 
flags; it sets the N flag if the result of the increment has a one in bit 7, 
otherwise resets N; sets the Z flag if the result of the increment is 0, 
otherwise it resets the Z flag. INX does not affect any other register other 
than the X register. INX is a single byte instruction and the only addressing 
mode is Implied. 
 

7.5 INY – INCREMENT INDEX REGISTER Y BY ONE 
 
Increment Y increments or adds one to the current value in the Y register, 
storing the result in the Y register. As in the case of INX the primary 
application is to step through a set of values using the Y register. The 

symbolic notation is Y + 1 → Y. The INY does not affect the carry or 
overflow flags, sets the N flag if the result of the increment has a one in 
bit 7, otherwise resets N, sets Z if as a result of the increment the Y register 
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is zero otherwise resets the Z flag. Increment Y is a single byte instruction 
and the only addressing mode is Implied. 
 

7.6 DEX – DECREMENT INDEX REGISTER X BY ONE 
 
This instruction subtracts one from the current value of the index register 
X and stores the result in the index register X. 
 

The symbolic notation is X – 1 → X. 
 
DEX does not affect the carry or overflow flag, it sets the N flag if it has 
bit 7 on as a result of the decrement, otherwise it resets the N flag; sets 
the Z flag if X is a 0 as a result of the decrement, otherwise it resets the 
Z flag. 
 
DEX is a single byte instruction, the addressing mode is Implied. 
 

7.7 DEY – DECREMENT INDEX REGISTER Y BY ONE 
 
This instruction subtracts one from the current value in the index register 
Y and stores the result into the index register Y. The result does not affect 
or consider carry so that the value in the index register Y is decremented 
to 0 and then through 0 to FF. 
 

Symbolic notation is Y – 1 → Y. 
 
Decrement Y does not affect: the carry or overflow flags; if the Y register 
contains bit 7 on as a result of the decrement the N flag is set, otherwise 
the N flag is reset. If the Y register is 0 as a result of the decrement, the 
Z flag is set otherwise the Z flag is reset. This instruction only affects the 
index register Y. 
 
DEY is a single byte instruction and the addressing mode is Implied. 
 
NOTE: Decrement of the index registers is the most convenient method of 
using the index registers as a counter, in that the decrement involves 
setting the value N on as a result of having passed through 0 and sets Z 
on when the results of the decrement are 0. 
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7.8 CPX – COMPARE INDEX REGISTER X TO MEMORY 
 
This instruction subtracts the value of the addressed memory location from 
the content of index register X using the adder but does not store the 
result; therefore, its only use is to set the N, Z and C flags to allow for 
comparison between the index register X and the value in memory. 
 
The symbolic notation is X – M. 
 
The CPX instruction does not affect any register in the machine; it also 

does not affect the overflow flag. It causes the carry to be set on if the 

absolute value of the index register X is equal to or greater than the 

data from memory. If the value of the memory is greater than the content 

of the index register X, carry is reset. If the results of the subtraction 

contain a bit 7, then the N flag is set, if not, it is reset. If the value in 

memory is equal to the value in index register X, the Z flag is set, 

otherwise it is reset. 

 
The addressing modes for CPX are Immediate, Absolute and Zero Page. 
 

7.9 CPY – COMPARE INDEX REGISTER Y TO MEMORY 

 
This instruction performs a two's complement subtraction between the 

index register Y and the specified memory location. The results of the 

subtraction are not stored anywhere. The instruction is strictly used to set 

the flags. 

 
The symbolic notation for CPY is Y – M. 
 
CPY affects no registers in the microprocessor and also does not affect 

the overflow flag. If the value in the index register Y is equal to or 

greater than the value in the memory, the carry flag will be set, otherwise 

it will be cleared. If the results of the subtraction contain bit 7 on, the N 

bit will be set, otherwise it will be cleared. If the value in the index 

register Y and the value in the memory are equal, the zero flag will be 

set, otherwise it will be cleared. 

 
The addressing modes for CPY are Immediate, Absolute and Zero Page. 
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7.10 TRANSFERS BETWEEN THE INDEX REGISTERS AND 

 ACCUMULATOR 

 

There are four instructions which allow the accumulator and index 

registers to be interchanged. They are TXA, TAX which transfers the 

contents of the index register X to the accumulator A and back, and TYA, 

TAY which transfers the contents of the index register Y to the accumulator 

A and back. The usefulness of this will be discussed after the instructions. 

 

7.11 TAX – TRANSFER ACCUMULATOR TO INDEX X 

 

This instruction takes the value from accumulator A and transfers or loads 

it into the index register X without disturbing the content of the 

accumulator A. 

 

The symbolic notation for this is A → X. 

 

TAX only affects the index register X, does not affect the carry or 

overflow flags. The N flag is set if the resultant value in the index register 

X has bit 7 on, otherwise N is reset. The Z bit is set if the content of the 

register X is 0 as a result of the operation, otherwise it is reset. TAX is a 

single byte instruction and its addressing mode is Implied. 

 

7.12 TXA – TRANSFER INDEX X TO ACCUMULATOR 

 

This instruction moves the value that is in the index register X to the 

accumulator A without disturbing the content of the index register X. 

 

The symbolic notation is X → A. 

 

TXA does not affect any register other than the accumulator and does not 

affect the carry or overflow flag. If the result in A has bit 7 on, then the 

N flag is set, otherwise it is reset. If the resultant value in the accumulator 

is 0, then the Z flag is set, otherwise it is reset. 

 

The addressing mode is Implied, it is a single byte instruction. 
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7.13 TAY – TRANSFER ACCUMULATOR TO INDEX Y 
 
This instruction moves the value of the accumulator into index register Y 
without affecting the accumulator. 
 

The symbolic notation is A → Y. 
 
TAY instruction only affects the Y register and does not affect either the 
carry or overflow flags. If the index register Y has bit 7 on, then N is set, 
otherwise it is reset. If the content of the index register Y equals 0 as a 
result of the operation, Z is set on, otherwise it is reset. 
 
TAY is a single byte instruction and the addressing mode is Implied. 
 
 

7.14 TYA – TRANSFER INDEX Y TO ACCUMULATOR 

 
This instruction moves the value that is in the index register Y to 
accumulator A without disturbing the content of the register Y. 
 

The symbolic notation is Y → A. 
 
TYA does not affect any other register other than the accumulator and 
does not affect the carry or overflow flag. If the result in the accumulator 
A has bit 7 on, the N flag is set, otherwise it is reset. If the resultant value 
in the accumulator A is 0, then the Z flag is set, otherwise it is reset. 
 
The addressing mode is Implied and it is a single byte instruction. 
 
 
 
 
 
Some of the applications of the transfer instructions between accumulator 
A and index registers X, Y are those when the user wishes to use the index 
register to access memory locations where there are multiple byte values 
between the addresses. In this application a count is loaded into the index 
register, the index register is transferred to the accumulator, a value such 
as 5, 7, 10, etc. is added immediate to the accumulator and results stored 
back into the index register using the TAX or TAY instruction. The 
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consequence of this type of operation is that it allows the microprocessor 
to address non-consecutive locations in memory. Another application is 
where the internal transfer instructions allow the index registers to hold 
intermediate values for the accumulator which allows rapid transfer to 
and from the accumulator to help solve high speed data shuffling 
problems. 
 

7.15 SUMMARY OF INDEX REGISTER APPLICATIONS AND 
 MANIPULATIONS 

 
Primary use of index register X and Y is as offset and counters for data 
manipulation in which the index register is used to compute an address 
based on the value of the index register plus base address specified by 
the user, either in a fixed instruction format or in a variable pointer type 
format. In order to operate as both an offset and counter, index registers 
may be incremented or decremented by one or compared to values from 
memory. There are limitations on the applications of each of the index 
registers which have to do with formats which are unique to certain 
instruction addressing modes. Because of the ability of the index registers 
to be loaded, changed and stored, they are also useful as general 
purpose registers. They can be used as interim storages for moves 
between memory locations or for moves between memory and the 
accumulator. 
 
One of the optimum uses of the indexing concept is the case when the 
index register is being used both as an offset and a counter. This type of 
operation uses the ability of the microprocessor to perform a decrement 
function on the index registers and set flags. Therefore, a single 
decrement instruction not only changes the value in the counter but can 
also perform a test on the count value. 
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CHAPTER 8 

 
 

STACK PROCESSING 
 
 
 
 
 

8.0 INTRODUCTION TO STACK AND TO PUSH DOWN STACK 
 CONCEPT 

 
In all of the discussions on addressing, it has been assumed that either the 
exact location or at least a relation to an exact location of a memory 
address was known. 
 
Although this is true in most of the programming for control applications, 
there are certain types of programming and applications which require 
that the basic program not be working with known memory locations but 
only with a known order for accessing memory. This type of programming 
is called re-entrant coding and is often used in servicing interrupts. 
 
To implement this type of addressing, the microprocessor maintains a 
separate address generator which is used by the program to access 
memory. This address generator uses a push down stack concept. 
 
Discussions of push down stacks are usually best stated considering that if 
one were given 3 cards, an ace, a king and a ten and were told that the 
order of cards was important and asked to lay them down on the table 
in the order in which they were given, ace first, the king on top of it and 
finally the ten, and then if they were retrieved, 1 card at a time, the ten 
is retrieved first even though it was put on last, the king is retrieved 
second, the ace retrieved last, even though it was put on first. 
 
The only commands needed to implement this operation are “put next 
card on stack” and “pull next card from the stack.” The stack could be 
processing clubs and then go to diamonds and back to clubs. However, 
we know that while we are processing clubs, we will always find ten first, 
king second, etc. 



 

104 

The hardware implementation of the ordered card stack which just 

described is a 16-bit counter, into which the address of a memory location 

is stored. This counter is called a “Stack Pointer.” Every time data is to be 

pushed onto the stack, the stack pointer is put out on the address bus, 

data is written into the memory addressed by the stack pointer, and the 

stack pointer is decremented by 1 as may be seen in Example 8.1. Every 

time data is pulled from the stack, the stack pointer is incremented by 1. 

The stack pointer is put out on the address bus, and data is read from the 

memory location addressed by the stack pointer. This implementation 

using the stack pointer gives the effect of a push down stack which is 

program independent addressing. 

 
Example 8.1: Basic stack may for 3-deep JMP to subroutine sequence 
 

Stack Address Data 
  

01FF PCH1 
01FE PCL1 
01FD PCH2 
01FC PLC2 
01FB PCH3 
01FA PCL3 
01F9  

 
In the above example, the stack pointer starts out at 01FF. The stack 

pointer is used to store the first state of the program counter by storing 

the content of program counter high at 01FF and the content of program 

counter low at 01FE. The stack pointer would now be pointed at 01FD. 

The second time the store program count is performed, the program 

counter high number is stored on the stack at 01FD and the program 

counter low is stored at 01FC. The stack pointer would now be pointing 

at 01FB. The same procedure is used to store the third program counter. 

 

When data is taken from the stack, the PCL3 will come first and the PCH3 

will come second just by adding 1 to the stack pointer before each 

memory read. The example above contains the program count for 3 

successive jump and store operations where the jump transfers control to 

a subroutine and stores the value of the program counter onto the stack 

in order to remember to which address the program should return after 

completion of the subroutine. 
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Following is an example of a program that would create the Example 
8.1 stack operation. 
 
Example 8.2: Basic Stack Operation 
 

Program 
Counter Label Instruction  

  ________________  

  ________________  

PC1  Jump to Subroutine 1  

  ________________ 

  ________________ 

  ________________ 

  • 

  • 

  • 

 SUB1 ________________ 

  ________________  

PC2  Jump to Subroutine 2  

  ________________ 

  ________________ 

  ________________ 

  • 

  • 

  • 

  • 

 SUB2 ________________ 

  ________________  

  ________________  

PC3  Jump to Subroutine 3  

  • 

  • 

  • 

  • 

 SUB3 ________________ 

  ________________  

  ________________  

  ________________  

  ________________  
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This is known as subroutine nesting and is often encountered in solving 
complex control equations. 
 
To correctly use the stack for this type of operation requires a jump to 
subroutine and a return from subroutine instruction. 
 

8.1 JSR – JUMP TO SUBROUTINE 
 
This instruction transfers control of the program counter to a subroutine 
location but leaves a return pointer on the stack to allow the user to return 
to perform the next instruction in the main program after the subroutine 
is complete. To accomplish this, JSR instruction stores the program counter 
address which points to the last byte of the jump instruction onto the stack 
using the stack pointer. The stack byte contains the program count high 
first, followed by program count low. The JSR then transfers the addresses 
following the jump instruction to the program counter low and the 
program counter high, thereby directing the program to begin at that 
new address. 
 
The symbolic notation for this is: 
PC + 2↓, (PC + 1) → PCL, (PC + 2) → PCH. 
 
The JSR instruction affects no flags, causes the stack pointer to be 
decremented by 2 and substitutes new values into the program counter 
low and the program counter high. The addressing mode for the JSR is 
always Absolute. 
 
Example 8.3 gives the details of a JSR instruction. 
 
Example 8.3: Illustration of JSR instruction 
 

Program Memory  
PC Data  

0100 JSR  
0101 ADL  
0102 ADH Subroutine 

   
Stack Memory  

Stack 
Pointer Stack 

 

01FD   
01FE 02  
01FF 03  
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Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0100 OP CODE Fetch 
Instruction 

Finish Previous 
Operation; Increment 
PC to 0101 

2 0101 New ADL Fetch New ADL Decode JSR; 
Increment PC to 0102 

3 01FF   Store ADL 

4 01FF PCH Store PCH Hold ADL, Decrement S 
to 01FE 

5 01FE PCL Store PCL Hold ADL, Decrement S 
to 01FD 

6 0102 ADH Fetch ADH Store Stack Pointer 

7 ADH, ADL New OP 
CODE 

Fetch New 
OP CODE 

ADL → PCL 
ADH → PCH 

   *S Denotes “Stack Pointer.” 

 
In this example, it can be seen that during the first cycle the 
microprocessor fetches the JSR instruction. During the second cycle, 
address low for new program counter low is fetched. At the end of cycle 
2, the microprocessor has decoded the JSR instruction and holds the 
address low in the microprocessor until the stack operations are complete. 
 
NOTE: The stack is always stored in Page 1 (Hex address 0100–01FF). 
 
The operation of the stack in the MCS650X microprocessor is such that 
the stack pointer is always left pointing at the next memory location into 
which data can be stored. In Example 8.3, the stack pointer is assumed 
to be at 01FF in the beginning and PC at location 0100. During the third 
cycle the microprocessor puts the stack pointer onto the address lines and 
on the fourth writes the contents of the current value of the program 
counter high, 01, into the memory location indicated by the stack pointer 
address. During the time that the write is being accomplished, the stack 
pointer is being automatically decremented by 1 to 01FE. During the fifth 
cycle the PCL is stored in the next memory location with the stack pointer 
being automatically decremented. 
 
It should be noted that the program counter low, which is now stored in 
the stack, is pointing at the last address in the JSR sequence. This is not 
what would be expected as a result of a JSR instruction. It would be 
expected that the stack points at the next instruction. This apparent 
anomaly in the machine is corrected during the Return from Subroutine 
instruction. 
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Note: At the end of the JSR instruction, the values on the stack contain the 
program counter low and the program counter high which referenced the 
last address of the JSR instruction. Any subroutine calls which want to use 
the program counter as an intermediate pointer must consider this fact. It 
should be noted also that the Return from Subroutine instruction performs 
an automatic increment at the end of the RTS which means that any 
program counters which are substituted on the stack must be 1 byte or 1 
pointer count less than the program count to which the programmer 
expects the RTS to return. 
 
The advantage of delaying the accessing of the address high until after 
the current program counter can be written in the stack is that only the 
address low has to be stored in the microprocessor. This has the effect of 
shortening the JSR instruction by 1 byte and also minimizing internal 
storage requirements. 
 
After both program counter low and high have been transferred to the 
stack, the program counter is used to access the next byte which is the 
address high for the JSR. During this operation, the sixth cycle, internally 
the microprocessor is storing the stack pointer which is now pointing at 
01FD or the next location at which memory can be loaded. 
 
During the seventh cycle the address high from the data bus and the 
address low stored in the microprocessor are transferred to the new 
program counter and are used to access the next OP CODE, thus making 
JSR a 6-cycle instruction. 
 
At the completion of the subroutine the programmer wants to return to the 
instruction following the Jump-to-Subroutine instruction. This is 
accomplished by transferring the last 2 stack bytes to the program 
counter which allows the microprocessor to resume operations at the 
instruction following the JSR, and it is done by means of the RTS instruction. 
 

8.2 RTS – RETURN FROM SUBROUTINE 
 
This instruction loads the program count low and program count high from 
the stack into the program counter and increments the program counter 
so that it points to the instruction following the JSR. The stack pointer is 
adjusted by incrementing it twice. 
 

The symbolic notation for the RTS is PC↑, INC PC. 
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The RTS instruction does not affect any flags and affects only PCL and 
PCH. RTS is a single-byte instruction and its addressing mode is Implied. 
 
The following Example 8.4 gives the details of the RTS instruction. It is the 
complete reverse of the JSR shown in Example 8.3. 
 
Example 8.4: Illustration of RTS instruction 
 

Program Memory 
PC Data 

0300 RTS 
0301 ? 

  
Stack Memory 

Stack Pointer Stack 
01FD ? 
01FE 02 
01FF 01 

 
 

Return from Subroutine (Example) 

 
Cycle Address 

Bus 
Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0300 OP CODE Fetch OP CODE Finish Previous 
Operation, 0301 → PC 

2 0301 Discarded 
Data 

Fetch Discarded 
Data 

Decode RTS 

3 01FD Discarded 
Data 

Fetch Discarded 
Data 

Increment Stack Pointer 
to 01FE 

4 01FE 02 Fetch PCL Increment Stack Pointer 
to 01FF 

5 01FF 01 Fetch PCH  

6 0102 Discarded 
Data 

Put Out PC Increment PC by 1 to 
0103 

7 0103 Next OP 
CODE 

Fetch Next OP 
CODE 

 

 
As we can see, the RTS instruction effectively unwinds what was done to 

the stack in the JSR instruction. Because RTS is a single-byte instruction it 

wastes the second memory access in doing a look-ahead operation. 
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During the second cycle the value located at the next program address 

after the RTS is read but not used in this operation. It should be noted 

that the stack is always left pointing at the next empty location, which 

means that to pull off the stack, the microprocessor has to wait 1 cycle 

while it adds 1 to the stack address. This is done to shorten the interrupt 

sequence which will be discussed below; therefore, cycle 3 is a dead 

cycle in which the microprocessor fetches but does not use the current 

value of the stack and, like the fetch of address low on Indexed and Zero 

Page Indexed operations, does nothing other than initialize the 

microprocessor to the proper state. It can be seen that the stack pointer 

decrements as data is pushed on to the stack and increments as data is 

pulled from the stack. In the fourth cycle of the RTS, the microprocessor 

puts out the 01FE address, reads the data stored there which is the 

program count low which was written in the second write cycle of the JSR. 

During the fifth cycle, the microprocessor puts out the incremented stack 

picking up the program count high which was written in the first write cycle 

of the JSR. 

 

As is indicated during the discussions of JSR, the program counter stored 

on the stack really points to the last address of the JSR instruction itself; 

therefore, during the sixth cycle the RTS causes the program count from 

the stack to be incremented. That is the only purpose of the sixth cycle. 

Finally, in the seventh cycle, the incremented program counter is used to 

fetch the next instruction; therefore, RTS takes 6 cycles. 

 

Because every subroutine requires 1 JSR followed by 1 RTS, the time to 

jump to and return from a subroutine is 12 cycles. 

 

In the previous 2 examples, we have shown the operations of the JSR 

located in location 100 and the RTS located in location 300. The following 

pictorial diagram, Example 8.5, illustrates how the memory map for this 

operation might look: 
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Example 8.5: Memory map for RTS instruction 
 

Address 
Bus 

 
Data 
 

100 JSR 
101 04 
102 02 
103 Next Instruction 

  
  

0204 First Instruction of Subroutine 
  
  

0300 RTS 
 
With this capability of subroutining, the microprocessor allows the 
programmer to go from the main program to 1 subroutine, to the second 
subroutine, to a third subroutine, then finally working its way back to the 
main program. Example 8.6 is an expansion of Example 8.2 with the 
returns included. 
 
Example 8.6: Expansion of RTS memory map 
 

Main Program 
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This concept is known as nesting of subroutines, and the number of 

subroutines which can be called and returned from in such a manner is 

limited by only the length of the stack. 

 

8.3 IMPLEMENTATION OF STACK IN MCS6501 THROUGH 

 MCS6505 

 

As we have seen, the primary requirement for the stack is that irrespective 

of where or when a stack operation is called, the microprocessor must 

have an independent counter or register which contains the current 

memory location value of the stack address. This register is called the 

Stack Pointer, S. The stack becomes an auxiliary field in memory which is 

basically independent of programmer control. We will discuss later how 

the stack pointer becomes initialized, but once it is initialized, the primary 

requirement is that it be self-adjusted; in other words, operations which 

put data on the stack cause the pointer to be decremented automatically; 

operations which take data off from the stack cause the pointer to be 

incremented automatically. Only under rare circumstances should the 

programmer find it necessary to move his stack from one location to 

another if he is using the stack as designed. 

 

On this basis, there is no need for a stack to be longer than 256 bytes. 

To perform a single subroutine call takes only 2 bytes of stack memory. 

To perform an interrupt takes only 3 bytes of stack memory. Therefore, 

with 256 bytes, one can access 128 subroutines deep or interrupt 

ourselves 85 times. Therefore the length of the stack is extremely unlikely 

to be limiting. The MCS650l through MCS6505 have a 256-byte stack 

length. 

 

Figure 8.1, which is now the complete block diagram, shows all of the 

microprocessor registers. The 8-bit stack pointer register, S, has been 

added. It is initialized by the programmer and thereafter automatically 

increments or decrements, depending on whether data is being put on to 

the stack or taken off the stack by the microprocessor under control of 

the program or the interrupt lines. 
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Block Diagram of MCS650X Including Stack Pointer, S 

FIGURE 8.1 
 
 
The primary purpose of the stack is to furnish a block of memory locations 

in which the microprocessor can write data such as the program counter 

for use in later processing. In many control systems the requirements for 

Read/Write memory are very small and the stack just represents another 

demand on Read/Write memory. Therefore these applications would like 

the stack to be in the Page Zero location in order that memory allocation 

for the stack, the Zero Page operations, and the indirect addresses can 

be performed, therefore, one of the requirements of a stack is that it be 

easily locatable into Page Zero. 

 

On the other hand, if more than 1 page of RAM is needed because of 

the amount of data that must be handled by the user programs, having 

the stack in Page Zero is an unnecessary waste of Page Zero memory in 

the sense that the stack can take no real advantage of being located in 

Zero Page, whereas other operations can. 
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In each of the examples, the stack has been located at high order address 

01 followed by a low order address. In the same manner as the 

microprocessor forces locations 00 on to the high order 8 bits of the 

address lines for Zero Page operations, the microprocessor automatically 

puts 01 Hex on to the high order 8-bit address lines during each stack 

operation. This has the advantage to the user of locating the stack into 

Page One of memory which would be the next memory location added 

if the Zero Page operation requirements exceed Page Zero memory 

capacity. This has the advantage of the stack not requiring memory to be 

added specifically for the stack but only requiring the allocation of 

existing memory locations. It should be noted that the selected addressing 

concepts of the MCS650X microprocessor support devices would involve 

connecting the memories such that bit 8, which is the selection bit for the 

Page One versus Page Zero, is a “don't care” for operations in which the 

user does not need more than 1 page of Read/Write memory. This gives 

the user the effect of locating stack in rage Zero for those applications. 

 

The second feature that should be noted from the examples is that the 

stack was located at the end of Page One and decremented from that 

point towards the beginning of the page. This is the natural operation of 

the stack. RAM memory comes in discrete increments, 64, 128, 256 bytes 

so the normal method of allocating stack addressing is for the user to 

calculate the number of bytes probably needed for stack access. This 

could be done by analyzing the number of subroutines which might be 

called and the amount of data which might be put onto the stack in order 

to communicate between subroutines or the number of interrupts plus 

subroutines which might occur with the respective data that would be 

stored on the stack for each of them. By counting 3 bytes for each 

interrupt, 2 bytes for each jump to subroutine, plus 1 byte for each 

programmer-controlled stack operation, the microprocessor designer can 

estimate the amount of memory which must be allocated for the stack. 

This is part of his decision-making process in deciding how much memory 

is necessary for his whole program. 

 

Once the allocation has been made, it is recommended that the user 

assign his working storage from the beginning of memory forward and 

always load his stack at the end of either Page Zero, Page One, or at 

the end of his physical memory which is located in one of those locations. 
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This will give the effect of having the highest bytes of memory allocated 

to the stack, lower bytes of memory allocated to user working storage 

and hopefully the two shall never overlap. 

 

It should be noted that the natural operation of the stack, which often is 

called by hardware not totally under program control, is such that it will 

continue to decrement throughout the page to which it is allocated 

irrespective of the user's desire to have it do so. A normal mistake in 

allocation in memory can result in the user writing data into a memory 

location and later accessing it with another subroutine or another part of 

his program, only to find that the stack has very carefully written over 

that area as the result of its performing hardware control operations. This 

is one of the more difficult problems to diagnose. If this problem is 

suspected by the programmer, he should analyze memory locations 

higher than unexplained disturbed locations. 

 

There is a distinctive pattern for stack operations which are unique to the 

user's program but which are quite predictable. An analysis of the value 

which has been destroyed will often indicate that it is part of an address 

which would normally be expected during the execution of the program 

between the time data was stored and the time it was fetched. This is a 

very strong indication of the fact that the stack somehow or other did get 

into the user's program area. This is almost always caused by improper 

control of interrupt lines or unexpected operations of interrupt or 

subroutine calls and has only 2 solutions: (1) If the operation is normal 

and predictable, the user must assign more memory to his program and 

particularly reassign his memory such that the stack has more room to 

operate; or (2) if the operation of the interrupt lines is not predictable, 

attention must be given to solving the hardware problem that causes this 

type of unpredictable operation. 

 

8.3.1 Summary of Stack Implementation 
 
The MCS6501 through MCS6505 microprocessors have a single 8-bit 
stack register. This register is automatically incremented and 
decremented under control of the microprocessor to perform stack 
manipulation operations, under direction of the user program or the 
interrupt lines. Once the programmer has initialized the stack pointer to 
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the end of whatever memory he wants the stack to operate in, the 
programmer can ignore stack addressing other than in those cases where 
there is an interference between stack operations and his normal 
program working space. 
 
In the MCS6501 through MCS6505, the stack is automatically located in 
Page One. The microprocessor always puts out the address 0100 plus 
stack register for every stack operation. By selected memory techniques, 
the user can either locate the stack in Page Zero or Page One, depending 
on whether or not Page One exists for his hardware. 
 

8.4 USE OF THE STACK BY THE PROGRAMMER 
 
Discussed in Section 8.1 was the use of the JSR to call a subroutine. 
However, not indicated was the technique by which the subroutine knew 
which data to operate on. There are 3 classical techniques for 
communicating data between subroutines. The first and most 
straightforward technique is that each subroutine has a defined set of 
working registers located in the Page Zero in which the user has left 
values to be operated on by the subroutine. The registers can either 
contain the values directly or can contain indirect pointers to addresses 
to values which would be operated on. The following example shows the 
combination of these: 
 
Example 8.7: Call-a-move subroutine using preassigned memory 
  locations 
  

Location 10 =    Count     
Location 11, 12 = Base from Address 
Location 13, 14 = Base to Address 

Main Line Routine  
No. of Bytes Instruction Comment 

2 LDA #COUNT – 1 Load Fixed Value for the Move 
2 STA 10  
2 LDA #FRADH 

Setup “FROM” Pointer 
2 STA 12 
2 LDA #FRADL  
2 STA 11  
2 LDA #TOADL  
2 STA 13  
2 LDA #TOADH 

Setup “TO” Pointer 
2 STA 14 
3 JSR SUB1  

       23 bytes   
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Subroutine Coding 

 
No. of Bytes Label Instruction 

 
2 SUB1 LDY 10 
2 LOOP LDA (11), Y 
2  STA (13), Y 
1  DEY 
2  BNE LOOP 
1  RTS 

Total 33 bytes   
 
As has been previously developed, the loop time is the overriding 
consideration rather than setup time for a large number of executions. 
 
It can be seen that we have used the techniques developed in previous 
sections of the indirect referencing, the jump to subroutine and the return 
from subroutine to perform this type of subroutine value communication. 
In this operation, there was no use of the stack except for the program 
counter value. 
 
A second form of communication is the use of the stack itself as an 
intermediate storage for data which is going to be communicated to the 
subroutine. In order for the programmer to use the stack as an 
intermediate storage, he needs instructions which allow him to put data 
on the stack and to read from the stack. These instructions are known as 
push and pull instructions. 
 
8.5 PHA – PUSH ACCUMULATOR ON STACK 
 
This instruction transfers the current value of the accumulator to the next 
location on the stack, automatically decrementing the stack to point to the 
next empty location. 
 
The symbolic notation for this operation is A↓. Noted should be that the 

notation ↓ means push to the stack, ↑ means pull from the stack. 
 
Push A instruction only affects the stack pointer register which is 
decremented by 1 as a result of the operation. It affects no flags. 
 
PHA is a single-byte instruction and its addressing mode is Implied. 
 
The following example shows the operations which occur during Push A 
instruction. 
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Example 8.8: Operation of PHA, assuming stack at 01FF 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0100 OP CODE Fetch Instruction Finish Previous 
Operation, Increment 
PC to 0101 

2 0101 Next 
OP CODE 

Fetch Next 
OP CODE 
and discard 

Interpret PHA 
Instruction, Hold P-
Counter 

3 01FF (A) Write A on 
Stack 

Decrement Stack Pointer 
to 01FE 

4 0101 Next 
OP CODE 

Fetch Next 
OP CODE 

 

 
As can be seen, the PHA takes 3 cycles and takes advantage of the fact 

that the stack pointer is pointing to the correct location to write the value 

of A. As a result of this operation, the stack pointer will be sitting at 01FE. 

The notation (A) implies contents of A. Now that the data is on the stack, 

later on in the program the programmer will call for the data to be 

retrieved from the stack with a PLA instruction. 

 

8.6 PLA – PULL ACCUMULATOR FROM STACK 
 
This instruction adds 1 to the current value of the stack pointer and uses it 
to address the stack and loads the contents of the stack into the A register. 
 
The symbolic notation for this is A↑. 
 
The PLA instruction does not affect the carry or overflow flags. It sets N 
if the bit 7 is on in accumulator A as a result of instructions, otherwise it is 
reset. If accumulator A is zero as a result of the PLA, then the Z flag is set, 
otherwise it is reset. The PLA instruction changes content of the 
accumulator A to the contents of the memory location at stack register 
plus 1 and also increments the stack register. 
 
The PLA instruction is a single-byte instruction and the addressing mode is 
Implied. 
 
In the following example, the data stored on the stack in Example 8.8 is 
transferred to the accumulator. 
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Example 8.9: Operation of PLA stack from Example 8.8 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0200 PLA Fetch Instruction Finish Previous Operation, 
Increment PC to 0101 

2 0201 Next 
OP CODE 

Fetch Next 
OP CODE and 
Discard 

Interpret Instruction, Hold 
P-Counter 

3 01FE  Read Stack Increment Stack Pointer to 
01FF 

4 01FF (A) Fetch A Save Stack 

5 0201 Next 
OP CODE 

Fetch Next 
OP CODE 

M → A 

 
When taking data off the stack, there is 1 extra cycle during which time 
the current contents of the stack register are accessed but not used and 
the stack pointer is incremented by 1 to allow access to the value that 
was previously stored on the stack. The stack Pointer is left pointing at 
this location because it is now considered to be an empty location to be 
used by the stack during a subsequent operation. 
 
8.7 USE OF PUSHES AND PULLS TO COMMUNICATE VARIABLES 
 BETWEEN SUBROUTINE OPERATIONS 
 
In Example 8.10, we perform the same operation as we did in Example 
8.7; only here, instead of using fixed locations to pick up the pointers, we 
are going to use the stack as a communications vehicle: 
 
Example 8.10: Call-a-move subroutine using the stack to communicate 
  

 Location 11, 12 = Base “FROM” Address 
 Location 13, 14 = Base “TO” Address 

Main Line Routine  
Bytes Instruction 

 
 

2 LDA #COUNT –1  
1 PHA  
2 LDA # FRADL  
1 PHA  
2 LDA #FRADH  
1 PHA  
2 LDA #TOADL  
1 PHA  
2 LDA #TOADH  
1 PHA  
3 JSR SUB1  

18   
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Subroutine 
 

Bytes 
 

Label Instruction Comments 

2 SUB1 LDX 6  
1 LOOP1 PLA  
2  STA 10, X  
1  DEX Move Stack to Memory 
2  BNE LOOP1  
1  PLA Set Up Count 
1  TAY  
2 LOOP2 LDA (11), Y  
2  STA (13), Y Move Memory Location 
1  DEY  
2  BNE LOOP2  
2  LDA 15  
1  PHA 

Restore PC to Stack 
2  LDA 16 
1  PHA  
1  RTS  

Total 42 Bytes    

 
We can see from this example that using the stack as a communication 
vehicle actually increases the number of bytes in the subroutine and the 
total bytes overall. However, the only time one should be using 
subroutines in this case is when the subroutine is fairly long and the number 
of times the subroutine is used is fairly frequent. This technique does 
reduce the number of bytes in the calling sequence. The calling sequence 
is normally repeated once for every time the instruction is called; 
therefore the use of the stack to communicate should result in a net 
reduction in the number of bytes used in the total program. 
 
Up until this time, we have been considering that the stack is at a fixed 
location and that all stack references use the stack pointer. It has not been 
explained how the stack pointer in the microprocessor gets loaded and 
accessed. This is done through communication between the stack pointer 
and index register X. 
 

8.8 TXS – TRANSFER INDEX X TO STACK POINTER 
 
This instruction transfers the value in the index register X to the stack 
pointer. 
 
Symbolic Notation is X → S 
 
TXS changes only the stack pointer, making it equal to the content of the 
index register X. It does not affect any of the flags. 
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TXS is a single-byte instruction and its addressing mode is Implied. 
 
Another application for TXS is the concept of passing parameters to the 
subroutine by storing them immediately after the jump to subroutine 
instruction. 
 
In Example 8.11, the from and to address, plus the count of number of 
values would be written right after the JSR instruction and its address. 
 
By locating the stack in Page Zero, the address of the last byte of the 
JSR can be incremented to point at the parameter bytes and then used 
as an indirect pointer to move the parameter to its memory location. 
 
The key to this approach is transferring the stack pointer to X which allows 
the program to operate directly on the address while it is in the stack. 
 
It should be noted that this approach automatically leaves the address 
on the stack, positioned so that the RTS picks up the next OP CODE 
address. 
 
Example 8.11: Jump to subroutine (JSR) followed by parameters 
 

Address Bus Data 
 

0100 JSR 
0101 ADL 
0102 ADH 
0103 To High 
0104 To Low 
0105 From High 
0106 From Low 
0107 Count 
0108 Next OP CODE 

 
Before concluding this discussion on subroutines and parameter passing, 
one should again note the use of subroutines should be limited to those 
cases where the user expects to duplicate code of significant length 
several times in the program. In these cases, and only in these cases, is 
subroutine call warranted rather than the normal mode of knowing the 
addresses and specifying them in an instruction. In all cases where timing 
is of significant interest, subroutines should also be avoided. Subroutines 
add significantly to the setup and execution time of problem solution. 
However, subroutines definitely have their place in microcomputer code 
and there have been presented 3 alternatives for use in application 
programs. The user will find a combination of the above techniques most 
useful for solving his particular problem. 
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8.9 TSX – TRANSFER STACK POINTER TO INDEX X 
 
This instruction transfers the value in the stack pointer to the index register 
X. 
 
Symbolic notation is S → X. 
 
TSX does not affect the carry or overflow flags. It sets N if bit 7 is on in 
index X as a result of the instruction, otherwise it is reset. If index X is zero 
as a result of the TSX, the Z flag is set, otherwise it is reset. TSX changes 
the value of index X, making it equal to the content of the stack pointer. 
 
TSX is a single-byte instruction and the addressing mode is Implied. 
 
8.10 SAVING OF THE PROCESSOR STATUS REGISTER 
 
During the interrupt sequences, the current contents of the processor status 
register (P) are saved on the stack automatically. However, there are 
times in a program where the current contents of the P register must be 
saved for performing some type of other operation. A particular 
example of this would be the case of a subroutine which is called 
independently and which involves decimal arithmetic. It is important that 
the programmer keeps track of the arithmetic mode the program is in at 
all times. One way to do this is to establish the convention that the machine 
will always be in binary or decimal mode, with every subroutine changing 
its mode being responsible for restoring it back to the known state. This 
is a superior convention to the one that is about to be described. 
 
A more general convention would be one in which the subroutine that 
wanted to change modes of operation would push P onto the stack, then 
set the decimal mode to perform the subroutine and then pull P back from 
the stack prior to returning from the subroutine. 
 
Instructions which allow the user to accomplish this are as follows: 
 
8.11 PHP – PUSH PROCESSOR STATUS ON STACK 
 
This instruction transfers the contents of the processor status register 
unchanged to the stack, as governed by the stack pointer. 
 
Symbolic notation for this is P1. 
 
The PHP instruction affects no registers or flags in the microprocessor. 
 
PHP is a single-byte instruction and the addressing mode is Implied. 
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8.12 PLP – PULL PROCESSOR STATUS FROM STACK 

 

This instruction transfers the next value on the stack to the Processor Status 

register, thereby changing all of the flags and setting the mode switches 

to the values from the stack. 

 

Symbolic notation is ↑P. 

 

The PLP instruction affects no registers in the processor other than the 

status register. This instruction could affect all flags in the status register. 

 

PLP is a single-byte instruction and the addressing mode is Implied. 

 

8.13 SUMMARY OF THE STACK 

 

The stack in the MCS650X family is a push-down stack implemented by 

a processor register called the stack pointer which the programmer 

initializes by means of a Load X immediately followed by a TXS 

instruction and thereafter is controlled by the microprocessor which loads 

data into memory based on an address constructed by adding the 

contents of the stack pointer to a fixed address, Hex address 0100. Every 

time the microprocessor loads data into memory using the stack pointer, 

it automatically decrements the stack pointer, thereby leaving the stack 

pointer pointing at the next open memory byte. Every time the 

microprocessor accesses data from the stack, it adds 1 to the current value 

of the stack pointer and reads the memory location by putting out the 

address 0100 plus the stack pointer. The status register is automatically 

pointing at the next memory location to which data can now be written. 

The stack makes an interesting place to store interim data without the 

programmer having to worry about the actual memory location in which 

data will be directly stored. 

 

There are 8 instructions which affect the stack. They are: BRK, JSR, PHA, 

PHP, PLA, PLP, RTI and RTS. 

 

BRK and RTI involve the handling of the interrupts. 
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CHAPTER 9 

 
 

RESET AND INTERRUPT CONSIDERATIONS 
 
 
 
 
 
 
 
 
 

9.0 VECTORS 
 
Before developing the concepts of how the MCS650X Microprocessors 

handle interrupts and start-up, a brief definition of the concept of vector 

pointers needs to be developed. 

 

In the sections on Jumps and Branches, it was always assumed that the 

program counter is changed by the microprocessor under control of the 

programmer while accessing addresses which were in program sequence. 

In order to get the microprocessor started and in order to properly 

handle external control or interrupt, there has been developed a 

different way of setting the program counter to point at a specific 

location. This concept is called vectored pointers. A vector pointer consists 

of a program counter high and program counter low value which, under 

control of the microprocessor, is loaded in the program counter when 

certain external events occur. The word vector is developed from the fact 

that the microprocessor directly controls the memory location from which 

a particular operation will fetch the program counter value and hence 

the concept of vector. 

 

By allowing the programmer to specify the vector address and then by 

allowing the programmer to write coding that the address points to, the 

microprocessor makes available to the programmer all of the control 

necessary to develop a general purpose control program. The 

microprocessor has fixed address in memory from which it picks up the 

vectors. By this implementation, minimum hardware in the microprocessor 
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is obtained. Locations FFFA through FFFF are reserved for vector pointers 

for the microprocessor. Into these locations are stored respectively the 

interrupt vectors or pointers for: non-maskable interrupt, reset and 

interrupt request. 

 

9.1 RESET OR RESTART 

 
In the microprocessor, there is a state counter which controls when the 

microprocessor is going to use the program counter to access memory to 

pick up an instruction, then after the instruction is loaded, the 

microprocessor goes through a fixed sequence of interpreting instructions 

and then develops a series of operations which are based on the OP 

CODE decoding. 

 

Up to this point, it has been assumed that the program counter was set at 

some location and that all program counter changes are then directed by 

the program once the program counter had been initialized. 

 

Instructions exist for the initialization and loading of all other registers in 

the microprocessor except for the initial setting of the program counter. 

It is for this initial setting of the program counter to a fixed location in the 

restart vector location specified by the microprocessor programmer that 

the reset line in the microprocessor is primarily used. 

 

The reset line is controlled during power on initialization and is a common 

line which is connected to all devices in the microcomputer system which 

have to be initialized to a known state. The initialization of most I/O 

devices is such that they are brought up in a benign state such that with 

minimum coding in the microcomputer, the programmer can configure and 

control the I/O in an orderly fashion. 

 

The concept has important systems implications in systems where damage 

can be done if peripheral devices came up in unknown states. Therefore, 

in the MCS650X, power on or reset control operates at two levels. 
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First, by holding of an external line to ground, and having this external 

line connected to all the devices during power up transient conditions, the 

entire microcomputer system is initialized to a known disabled state. 

Second, the releases of the reset line from the ground or TTL zero 

condition to a TTL one condition causes the microprocessor to be 

automatically initialized, first by the internal hardware vector which 

causes it to be pointed to a known program location, and secondly 

through a software program which is written by the user to control the 

orderly start-up of the microcomputer system. 

 

All of the MCS650X family parts also obey a discipline that while the 

reset line is low, the system is in a stop or reset state. The microprocessor 

is guaranteed to be in a Read state and upon release of the reset line 

from ground to positive, the microprocessor will continue to hold the line 

in a Read state until it has addressed the specified vectored count 

location, at which time control of the microprocessor is available to the 

programmer. 

 

NOTE: The MC6800 family also follows this convention. 

 

9.2 START FUNCTION 

 

While the reset line is in the low state, it can be assumed that internal 

registers may be initialized to any random condition; therefore, no 

conditions about the internal state of the microprocessor are assumed 

other than that the microprocessor will, one cycle after the reset line goes 

high, implement the following sequence: 
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Example 9.1: Illustration of Start Cycle 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 ? ? Don’t Care Hold During Reset 

2 ? + 1 ? Don’t Care First Start State 

3 0100 + SP ? Don’t Care Second Start State 

4 0100 + SP–1 ? Don’t Care Third Start State 

5 0100 + SP–2 ? Don’t Care Fourth Start State 

6 FFFC Start PCL Fetch First Vector  

7 FFFD Start PCH Fetch Second Vector Hold PCL 

8 PCH PCL First 
OP CODE 

Load First OP CODE  

 
The start cycle actually takes seven cycles from the time the reset line is 
let go to TTL plus. On the eighth cycle, the vector fetched from the memory 
location FFFC and FFFD is used to access the next instruction. The 
microprocessor is now in a normal program load sequence, the location 
where the vector points should be the first OP CODE which the 
programmer desires to perform. 
 
The second point that should be noted is that the microprocessor actually 
accesses the stack three times during the start sequence in cycles 3, 4 and 
5. This is because the start sequence is in effect a specialized form of 
interrupt with the exception that the read/write line is disabled so that 
no writes to stack are accomplished during any of the cycles. 
 

9.3 PROGRAMMER CONSIDERATIONS FOR INITIALIZATION 

 SEQUENCES 

 

There are two major facts to remember about initialization. One, the only 

automatic operations of the microprocessor during reset are to turn on 

the interrupt disable bit and to force the program counter to the vector 

location specified in locations FFFC and FFFD and to load the first 

instruction from that location. Therefore, the first operation in any normal 

program will be to initialize the stack. This should be done by having 

previously decided what the stack value should he for initial operations 

and then doing a LDX immediate of this value followed by a TXS. By this 

simple operation, the microprocessor is ready for any interrupt or non-

maskable interrupt operation which might occur during the rest of the 

start-up sequence. 
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Once this is accomplished, the two non-variable operations of the machine 

are under control. The program counter is initialized and under 

programmer control and the stack is initialized and under program 

control. The next operations during the initialization sequences will consist 

of configuring and setting up the various control functions necessary to 

perform the I/O desired for the microprocessor. 

 

Specific discussion for considerations regarding the start-up are covered 

in Section 11. 

 

The major things which have to be considered include the current state of 

the I/O device and the non-destructive operations that will allow the state 

to be changed to the active state. 

 

The initialization programs mostly consist of loading accumulator A 

immediately with a bit pattern and storing it in the data control register 

of an I/O device. 

 

Note: The interrupt disable is automatically set by the microprocessor 

 during the start sequence. This is to minimize the possibility of a 

 series of interrupts occurring during the start-up sequence 

 because of uncontrolled external values although it is usually 

 possible to control interrupts as part of the configuration. 

 

The programmer should consider two effects. First, that the non maskable 

interrupt is not blockable by this technique since it would be possible to 

configure a device that was connected to a non maskable interrupt and 

have to service the interrupt immediately. Secondly, the mask must be 

cleared at the end of the start sequence unless the user has specific reason 

to inhibit interrupts after he has done the start-up sequence. Therefore, 

the next to last instruction of the start-up sequence should be CLI. 

 

It should be noted that the start-up routine is a series of sequential 

operations which should occur only during power on initialization and is 

the first step in the programmed logic machine. 
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Because the execution of the routine during power on occurs very seldom 

in the normal operation of the machine, the coding for power on sequence 

should tend to minimize the use of memory space rather than speed. 

 

The last instruction in the start-up sequence should initialize the decimal 

mode flag to the normal setting for the program. 

 

The next instruction should be the beginning of the user's normal 

programming for his device, everything preceding that being known as 

“housekeeping.” 

 

9.4 RESTART 

 

It should be noted that the basic microprocessor control philosophy allows 

for a single common reset line which initializes all devices. This line can 

be used to clear the microprocessor to a known state and to reset all 

peripherals to a known state; therefore, it can be used as a result of 

power interruption, during the power on sequence, or as an external clear 

by the user to re-initialize the system. 

 

As discussed in the hardware manual, restart is often used as an aid to 

making sure the microprocessor has been properly interconnected and 

that programs have been loaded in the correct locations. 

 

9.5 INTERRUPT CONSIDERATIONS 

 

Up until this point, the microprocessor has to proceed under programmer 

control through a variety of sequences. The only way for the programmer 

to change the sequence of operations of the microprocessor was to 

change the program counter location to point at new operations. The 

microprocessor is in control of fetching the next instruction at the conclusion 

of the current instruction. The only way that external events could control 

the microprocessor, if it were not for interrupts, would be for the 

programmer to periodically interrupt or stop processing data and check 

to see whether or not an external event which might cause him to change 

his direction has occurred. The problem with this technique is that I/O 
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events are usually asynchronous, i.e., not timed with the microprocessor 

internal instructions, therefore, it would be possible for the event to occur 

shortly after the programmer has stopped to look at I/O events which 

would mean that the event would not be sampled until the programmer 

took the time to stop his coding and sample again. 

 

because the sampling of I/O devices normally takes several byte counts 

or cycles to accomplish, the frequent insertion of checking routines into 

straight line code results in significant delays to the entire program. In 

trying to use this technique, there has to be a trade-off between the fact 

that the program wastes a significant amount of time checking events 

which have not yet occurred versus delaying checking of an event which 

has occurred and if not timely serviced the data may be lost. 

 

In order to solve this dichotomy, the concept of interrupt is used to signal 

the microprocessor that an external event has occurred and the 

microprocessor should devote attention to it immediately. This technique 

accomplishes processing in which the microprocessor's program is 

interrupted and the event that caused the interrupt is serviced. 

 

Transferring most of data and control to I/O devices in an interrupt driven 

environment will usually result in maximum program and/or programmer 

efficiency. Each event is serviced when it occurs which means there is a 

minimum amount of delaying in servicing events, also a minimum amount 

of coding because of elimination of the need to determine occurrence of 

several events simultaneously; each interrupting event is handled as a 

unique combination. It is possible to interrupt an interrupt processing 

routine and, therefore, all the interrupt logic uses the stack which allows 

processing of successive interrupts without any penalty other than 

increasing the stack length. 

 

A real world example of an event which should interrupt is when the user 

is given a panic button indicating to the microcomputer some event has 

occurred which requires total immediate attention of the microprocessor 

to solving that problem. 
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The action and events are as follows: The microprocessor user pushes the 

panic button; the panic switch sensor causes an external device to indicate 

to the microprocessor an interrupt is desired; the microprocessor checks 

the status of the internal interrupt inhibit signal; if the internal inhibit is set, 

then the interrupt is ignored. However, if it is reset or when it becomes 

reset through some program reaction, the following set of operations 

occur: 

 
Example 9.2: Interrupt Sequence 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 PC OP CODE Fetch OP CODE Hold Program Counter, 
Finish Previous 
Operation 

2 PC OP CODE Fetch OP Code Force a BRK Instruction, 
Hold P-Counter 

3 01FF PCH Store PCH on Stack Decrement Stack 
Pointer to 01FE 

4 01FE PCL Store PCL on Stack Decrement Stack 
Pointer to 01FD 

5 01FD P Store P on Stack Decrement Stack 
Pointer to 01FC 

6 FFFF New PCL Fetch Vector Low Put Away Stack 

7 FFFF New PCH Fetch Vector High Vector Low → 
PCL and Set I 

8 Vector 
PCH PCL 

OP CODE Fetch Interrupt 
Program 

Increment PC to 
PC + 1 

 
As can be seen in Example 9.2, the microprocessor uses the stack to save 

the reentrant or recovery code and then uses the interrupt vectors FFFE 

and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt 

request or a non maskable interrupt request had occurred. It should be 

noted that the interrupt disable is turned on at this point by the 

microprocessor automatically. 

 
 
 
 
 
 
 
 



 

132 

Because the interrupt disable had to be off for an interrupt request to 

have been honoured , the return from interrupt which loads the processor 

status from before the interrupt occurred has the effect of clearing the 

interrupt disable bit. After the interrupt has been acknowledged by the 

microprocessor by transferring to the proper vector location, there are a 

variety of operations which the user can perform to service the interrupt; 

however, all operations should end with a single instruction which 

reinitializes the microprocessor back to the point at which the interrupt 

occurred. This instruction is called the RTI instruction. 

 

9.6 RTI – RETURN FROM INTERRUPT 

 

This instruction transfers from the stack into the microprocessor the 

processor status and the program counter location for the instruction which 

was interrupted. By virtue of the interrupt having stored this data before 

executing the instruction and the fact that the RTI reinitializes the 

microprocessor to the same state as when it was interrupted, the 

combination of interrupt plus RTI allows truly reentrant coding. 

 

The symbolic notation for RTI is ↑P ↑PC. 

 

The RTI instruction reinitializes all flags to the position to the point they 

were at the time the interrupt was taken and sets the program counter 

back to its pre-interrupt state. It affects no other registers in the 

microprocessor. 

 

RTI is a single byte instruction and its addressing mode is Implied. 

 

In the following example, we can see the internal operation of the RTI 

which restores the microprocessor: 
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Example 9.3: Return from Interrupt 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0300 RTI Fetch OP CODE Finish Previous 
Operation, Increment 
PC to 0301 

2 0301 ? Fetch Next OP CODE Decode RTI 

3 01FC ? Discarded Stack 
Fetch 

Increment Stack Pointer 
to 01FD 

4 01FD P Fetch P Register Increment Stack Pointer 
to 01FE 

5 01FE PCL Fetch PCL Increment Stack Pointer 
to 01FF, Hold PCL 

6 01FF PCH Fetch PCH M→PCL, Store Stack 
Pointer 

7 PCH PCL OP CODE Fetch OP CODE Increment New PC. 

 
Note the effects of the extra cycle (3) necessary to read data from stack 
which causes the RTI to take six cycles. The RTI has restored the stack, 
program counter and status register to the point they were at before the 
interrupt was acknowledged. 
 
There is no automatic save of any of the other registers in the 
microprocessor. Because the interrupt occurred to allow data to be 
transferred using the microprocessor, the programmer must save the 
various internal registers at the time the interrupt is taken and restore 
them prior to returning from the interrupt. Saving of the registers is best 
done on the stack as this allows as many consecutive interrupts as the 
programming will allow for. Therefore, the routines which save all 
registers and restore them are as follows: 
 
Example 9.4: Illustration of Save and Restore for Interrupts 
 

Cycle Bytes    
3 1 SAVE PHA Save A 
2 1  TXA Save X 
3 1  PHA  
2 1  TYA Save Y 
3 1  PHA  

13 5    
4 1 RESTORE PLA Restore Y 
2 1  TAY  
4 1  PLA Restore X 
2 1  TAX  
4 1  PLA Restore A 

16 5    
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The SAVE coding assumes that the programmer wants to save and to 

restore registers A, X and Y. It should be noted that for many interrupts, 

the amount of coding that has to be performed in the interrupt is fairly 

small. 

 

In this type of operation, it is usually more desirable to shorten the 

interrupt processing time and not use all of the registers in the machine. 

Therefore, a more normal interrupt processing routine would consist of 

just saving registers A and X which means that the restore routine would 

be just restore registers X and A. This has the effect of shortening the 

interrupt routine by two bytes, and also shortens the restore routine by 

two bytes and will cut 5 cycles out of the interrupt routine and 6 cycles 

out of the restore routine. 

 

This technique combined with automatic features of the interrupt and the 

RTI allows multiple interrupts to occur with successive interrupts 

interrupting the current interrupt. This is one of the advantages of the use 

of the stack so that as many interrupts can interrupt other interrupts as 

can be held in the stack. The stack contains six bytes for every interrupt 

if all registers are saved, so 42 sequences of interrupts can be stored in 

one page. However, in more practical situations, consecutive interrupts 

hardly ever get more than about three deep. 

 

The advantage of allowing an interrupt to interrupt an interrupt is that 

the whole concept behind the interrupt is that asynchronous events can be 

responded to as rapidly as possible; therefore, it is desirable to allow 

the processing to service one interrupt to be interrupted to service the 

second, as long as the first interrupt has been properly serviced. 

 

To review how this is accomplished using the normal interrupt capability 

of the MCS650X, it is important that we review the bus concept which is 

inherent in the MCS6500 family and which is compatible with the M6800. 

 

As has already been discussed, all I/O operations on this type of 

microprocessor are accomplished by reading and writing registers which 

actually represent connections to physical devices or to physical pins 

which connect to physical devices. 
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Up until this point, this discussion has addressed itself to transferring of 

data into and out of the microprocessor. However, there is a concept that 

is inherent in the bus discipline that says that whenever an interrupt device 

capable of generating an interrupt desires to accomplish an interrupt, it 

performs two acts; first, it sets a bit, usually bit 7, in a register whose 

primary purpose is to communicate to the microprocessor the status of the 

device. The interrupting device causes one of perhaps many output lines 

to be brought low. These collector-or’d outputs are connected together to 

the IRQ pin on the MCS650X microprocessor. 

 

The interrupt request to the MCS650X is the IRQ pin being at a TTL zero. 

In order to minimize the handshaking necessary to accomplish an interrupt, 

all interrupting devices obey a rule that says that once an interrupt has 

been requested by setting the bit and pulling interrupt low, the interrupt 

will be held by the device until the condition that caused the interrupt has 

been satisfied. This allows several devices to interrupt simultaneously and 

also allows the microprocessor to ignore an interrupt until it is ready to 

service it. This ignoring is done by the interrupt disable bit which can be 

set on by the programmer and is initialized on by the interrupt sequence 

or by the start sequence. 

 

Once the interrupt line is low and interrupt disable is off, the 

microprocessor takes an interrupt which sets on the interrupt disable. The 

interrupt disable then keeps the input low line from causing more than 

one interrupt until an interrupt has been serviced. There is no other 

handshaking between the microprocessor and the interrupting device 

other than the collector-or’d line. This means that the microprocessor must 

use the normal addressing registers to determine which of several 

collector-or’d devices caused the line to go low and to process the 

interrupt which has been requested. 
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Once the processor has found the interrupting device by means of 

analyzing status bits which indicates an interrupt has been requested, the 

microprocessor then clears the status by reading or writing data as 

indicated by the status register. 

 

It should be noted that a significant difference between status registers 

and data registers in I/O devices is that status registers are never cleared 

by being read, only by being written into or by the microprocessor 

transferring data from a data register which corresponds to some status 

in the status register. Detailed examples of this interaction are discussed 

in Chapter 11. The clearing of the status register also releases the 

collector-or'd output thereby releasing the interrupt pin request. 

 

The basic interaction between the microprocessor and interrupting device 

is when interrupting device sets the status bit and brings its output IRQ 

line low. If its output IRQ line is connected to the microprocessor interrupt 

request line, the microprocessor waits until the interrupt disable is cleared, 

takes the interrupt vector, and sets the interrupt disable which inhibits 

further interrupts in the IRQ line. The microprocessor determines which 

interrupting device is causing an interrupt and transfers data from that 

device. 

 

Transferring of data clears the interrupt status and the IRQ pin. At this 

point, the programmer could decide that he was ready to accept another 

interrupt even though the data may have been read but not yet operated 

on. Allowing interrupts at this point, gives the most efficient operation of 

the microprocessor in most applications. 

 

There are also times when a programmer may be working on some 

coding the timing of which is so important that he cannot afford to allow 

an interrupt to occur. During these times, he needs to be able to turn on 

the interrupt disable. To accomplish this, the microprocessor has a set and 

clear interrupt disable capability. 
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9.7 SOFTWARE POLLING FOR INTERRUPT CAUSES 

 

As was indicated above, any one of several devices are collector-or’d to 

cause an IRQ. The effect of any one of the devices or combination of 

them having polled the IRQ line low is always the same. The interrupt 

stores the current status of the program counter and processor on the 

stack and transfers to a fixed vector address. In servicing the interrupt, it 

is important to save those registers which will be used in the analysis of 

the interrupt and during the interrupt processing, so the normal first steps 

of the interrupt routine are to do the SAFE procedures. 

 

The next operation is to determine which of the various potential 

interrupting devices caused the interrupt. To accomplish this, the 

programmer should make use of the fact that all interrupting devices 

signal the interrupt by a bit in the status register. All currently 

implemented 6800 and 6500 peripherals always have interrupt 

indicators; either bit 7 or bit 6 in their status register. Therefore, the basic 

loop that a user will use to verify the existence of an interrupt on one of 

five devices is as follows: 

 

Example 9.5: Interrupt Polling 

 
No of Bytes 

 
Cycles 

 
   

3 4 LDA  Status 1 

2 2 BMI  FIRST 

3 4 LDA  Status 2 

2 2 BMI  SECOND 

3 4 LDA  Status 3 

2 2 BMI  THIRD 

3 4 LDA  Status 4 

2 2 BMI  FOURTH 

3 4 LDA  Status 5 

2 2 BMI  FIFTH 

 RES1 JMP to RESTORE 

 FIRST LDA  DATA 1 

  CLI   

  Process 1   

  etc.   
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In this example, the simplest case where the potential interrupts are 

indicated by bit 7 being on, has been assumed. This allows advantage to 

be taken of the free N-bit test by following the load of the first status 

register with a branch on result minus. If the first device has an active 

interrupt request, the BMI will be taken to FIRST where the data is 

transferred. This automatically clears the interrupt for the first device. To 

allow multiple interrupts, the load A is followed by the CLI instruction 

which allows the program to accept another interrupt. As a result of the 

CLI, one of two things can occur; there is not another interrupt currently 

active, in which case, the microprocessor will continue to process the first 

interrupt down to the point where the interrupt is complete and the first 

subroutine does a jump to RESTORE, which is the routine that unsaves the 

registers that were used in the process of servicing the interrupt. If another 

device has an active interrupt which occurred either prior to the first 

interrupt or subsequent to it but before the microprocessor has reached 

the point where the CLI occurs, then the microprocessor will immediately 

interrupt again following the CLI, go back and save registers as defined 

before and come back into the polling loop. Therefore, multiple interrupts 

are serviced in the order in which they are looked at in polling sequence. 

Polling means that the program is asking each device individually whether 

or not it is the one that requested an interrupt. 

 

It should be noted that polling has the effect of giving perfect priority in 

the sense that no matter which two interrupts occur before the 

microprocessor gets to service one, the polling sequence always gives 

priority to the highest priority device first, then the second, then the third, 

etc. In light of the fact that this polling sequence requires no additional 

hardware to implement other than is available in the interrupting devices 

themselves, this is the least expensive form of interrupt and the one that 

should be used whenever possible because of its independence from 

external hardware. 
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Although it would appear that the last interrupting device in a sequence 

pays a significant time penalty based on the amount of instructions to be 

executed before the last device is serviced, the amount of time to perform 

polls is only six cycles per device and, therefore, the extra penalty that 

the last device has to pay over the first device is 24 cycles. This is in 

comparison to a minimum time to cause an interrupt (eight cycles), plus 

store time for registers (in the range of another 8 to 13 cycles) which 

means that the delay to the last devices is roughly twice what it would be 

for the first device. 

 

This timing just described represents a most interesting part of the analysis 

of interrupts for a microprocessor. There is a significant amount of fixed 

overhead which must be paid for the interrupt. This overhead includes the 

fact that the interrupts can only occur at the end of an instruction so, 

therefore, if an interrupt occurs prior to the end of an instruction, the 

microprocessor delays until the end of the instruction to service it. 

Therefore, in doing the worst case analysis, one has to consider the fact 

that the interrupt might be occurring in the middle of a seven cycle, 

read/modify/write instruction which means that the worst case time to 

process the first instruction in an interrupt sequence is 14 cycles (7 cycles 

plus the 7 cycles for the interrupt). 

 

In light of the fact that saving of additional registers is often required (at 

least the accumulator A must be saved), at least twice the number of 

cycles will be required. Consequently the absolute minimum worse case 

time for an interrupt is 17 cycles plus the time to transfer data which is 

another 4 cycles. Therefore interrupt driven systems must be capable of 

handling a delay of at least 20 cycles and more realistically, 20 to 50 

cycles before the first interrupt is serviced. This means that devices which 

are running totally interrupt driven must not require successive bytes of 

data to be transferred to the microprocessor in less than 30 or 40 cycles 

and on a given system, only one device is capable of operating at that 

rate at one time. This limits the interrupt driven frequency of data transfer 

to 40 KHz at a one megahertz clock system and 80 KHz on a two 

megahertz clock system. 
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An even more serious problem is the timing delay when an interrupt has 

just started to be serviced. The interrupt mask is on and higher priority 

interrupts are blocked from service. In this case, the delay to the service 

can easily stretch out to 100 cycles before the interrupt mask is cleared. 

This is one of the reasons for clearing up the interrupt mask as soon as 

data is transferred. (The non-maskable interrupt which will be discussed 

later is one solution to this problem.) A second is to only use interrupts for 

systems that have adequate buffering and/or slower transfer rates. This 

does not imply that most microprocessor applications should not be 

primarily interrupt driven. The MCS650X interrupt system is designed to 

be very economical and easy to apply. It should be used for almost all 

control applications, other than when the throughput described is not 

sufficient to handle the particular problem. It should be remembered that 

at one megahertz the fast MCS650X is not really capable of handling 

problems with more than 50 KHz byte throughput for a sustained period 

of operation. It is also true that in most control applications, many of the 

signals occur at much slower rates or are bufferable so that the response 

time to a request for service is significantly longer than the 20 to 50 

cycles that can normally be expected with a polling system. Because of 

this, it is expected that most applications will be quite satisfied using the 

polling technique described above. 

 

9.8 FULLY VECTORED INTERRUPTS 

 

However, there are occasions where several high speed peripherals can 

be managed by the microprocessor if the user is willing to make the 

investment to attain a truly vectored interrupt. There is a second level of 

interrupt vectoring possible by just putting one high priority device on the 

non-maskable interrupt line. However, the case when multiple inputs are 

desired with both priority encoding and true vectoring, the MCS650X 

when combined with appropriate hardware has the ability in the first 

polling instruction to transfer control to appropriate interrupting device 

service software. 
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The MCS6520 contains, in its two bytes of memory, an indirect pointer to 

the address of the subroutine in which resides the interrupt processing for 

the devices, which the priority encoder has selected. This gives an 

effective service time of approximately 25 cycles to a prioritized 

interrupt and is one of the primary applications of the jump indirect 

capability. 

 

9.8.1 JMP Indirect 

 

This instruction establishes a new value for the program counter. 

 

It affects only the program counter in the microprocessor and affects no 

flags in the status register. 

 

JMP Indirect is a three byte instruction. 

 

In the JMP Indirect instruction, the second and third bytes of the instruction 

represent the indirect low and high bytes respectively of the incremented 

with the next memory location containing ADH. 

 
Example 9.6: Illustration of JMP Indirect 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation. Increment 
PC to 0101 

2 0101 IAL Fetch IAL Interpret Instructions 
Increment PC to 0102 

3 0102 IAH Fetch IAH Store IAL 
4 IAH, IAL ADL Fetch ADL Add 1 to IAL 
5 IAH, IAL+1 ADH Fetch ADH Store ADL 
6 ADH, ADL Next 

OP CODE 
Fetch Next 
OP CODE 
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9.9 INTERRUPT SUMMARY 
 
There is an interrupt request line (IRQ) that, when low, indicates one of 
the devices which are connected to the interrupt request line requires 
service. At the beginning of the interrupt service routine, the user should 
save, on the stack, whatever registers will be used in his interrupt 
processing routine. His program then goes through a polling sequence to 
determine the interrupting device by analyzing the status registers in the 
order of priority of service for the I/O devices. On finding a device which 
requires service, the data for that device should be read or written as 
soon as possible and the interrupt disable cleared so that the 
microprocessor can interrupt again to service lower priority devices. 
Devices with over 40 KHz byte transfer, etc., and mixed devices with over 
20 KHz should not normally be run interrupt driven. All others should be 
run interrupt driven as it minimizes the service time and programming for 
interrupt I/O operations. 
 

9.10 NON-MASKABLE INTERRUPT 
 

As is discussed, it is often desirable to have the ability to interrupt an 
interrupt with a high priority device which cannot afford to wait during 
the time interrupts are disabled. For this reason, the MCS650X has a 
second interrupt line, called a Non-Maskable Interrupt. The input 
characteristics of this line are different than the interrupt request line 
which senses it needs service when it remains low. The non-maskable input 
is an edge sensitive input which means that when the collector-or'd input 
transitions from high to low, the microprocessor sets an internal flag such 
that at the beginning of the next instruction, no matter what the status of 
the interrupt disable, the microprocessor performs the interrupt sequence 
shown in Example 9.2 except that the vector pointer put out in cycle 6 
and 7 is FFFA and FFFB. 
 
This gives two effects of a non-maskable interrupt. First, no matter what 
the status of the interrupt disable, the non-maskable interrupt will 
interrupt at the beginning of the next instruction, therefore, the maximum 
response time to the vector point is 14 cycles. Secondly, the internal logic 
of the MCS650X is such that if an interrupt request and non-maskable 
interrupt occur simultaneously or if the non-maskable interrupt occurs prior 
to the time that the vectors are selected, the microprocessor always 
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assigns highest priority to the non-maskable interrupt. Therefore, the FFFA 
and FFFB vector are always taken if both interrupts are active at the time 
the vector is selected. Thus the non-maskable interrupt is always a higher 
priority fast response line, and can, in any given system be used to give 
priority to the high speed device. 
 
It is possible to connect multiple devices to the non-maskable interrupt line 

except for the fact that the non-maskable interrupt is edge sensitive. 

Therefore, the same logic that allows the IRQ to stay low until the status 

has been checked and the data transferred will keep the non-maskable 

interrupt line in a low state until such time as the first interrupt is serviced. 

If subsequent to the first interrupt of a non-maskable interrupt line 

occurring, a second device which is collector-or’d would have turned on 

its status and collector-or'd output, the clearing of the first interrupt 

request would not cause the line to re-initialize itself to the high state and 

the microprocessor would ignore the second interrupt. Therefore, multiple 

lines connected to the non-maskable interrupt must be carefully serviced. 

 

In any case, NMI is always one free high priority vectored interrupt. By 

virtue of the fact that it goes to a different vector pointer, the 

microprocessor programmer can be guaranteed that in 17 cycles he can 

transfer data from the interrupting device on the non-maskable interrupt 

input. 

 

The IRQ and NMI are lines which, externally to the microprocessor, control 

the action to the microprocessor through an interrupt sequence. As is 

mentioned during the discussion on the start command, the restart cycle is 

a pseudo interrupt operation with a different vector being selected for 

reset which has priority over both interrupt and non-maskable interrupt. 

Non-maskable interrupt has priority over interrupt. There is also a 

software technique which allows the user to simulate an interrupt with a 

microprocessor command, BRK. It is primarily used for causing the 

microprocessor to go to a halt condition or stop condition during program 

debugging. 
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9.11 BRK – BREAK COMMAND 
 
The break command causes the microprocessor to go through an interrupt 
sequence under program control. This means that the program counter of 
the second byte after the BRK is automatically stored on the stack along 
with the processor status at the beginning of the break instruction. The 
microprocessor then transfers control to the interrupt vector. 
 

Symbolic notation for break is PC + 2↓ (FFFE)→PCL (FFFF)→PCH. 

 
Other than changing the program counter, the break instruction changes 
no values in either the registers or the flags. 
 
The BRK is a single byte instruction and its addressing mode is Implied. 
 
As is indicated, the most typical use for the break instruction is during 
program debugging. When the user decides that the particular program 
is not operating correctly, he may decide to patch in the break instruction 
over some code that already exists and halt the program when it gets to 
that point. In order to minimize the hardware cost of the break which is 
applicable only for debugging, the microprocessor makes use of the 
interrupt vector point to allow the user to trap out that a break has 
occurred. In order to know whether the vector was fetched in response to 
an interrupt or in response to a BRK instruction, the B flag is stored on the 
stack, at stack pointer plus 1, containing a one in the break bit position, 
indicating the interrupt was caused by a BRK instruction. The B bit in the 
stack contains 0 if it was caused by a normal IRQ. Therefore, the coding 
to analyze for this is as follows in Example 9.7. 
 
Example 9.7: Break-Interrupt Processing 
 

Cycles 
 

Bytes Check for a BRK Flag 

4 1 PLA Load Status Register 
3 1 PHA Restore onto Stack 
2 2 AND # $ 10 Isolate B Flag 
2 2 BNE BRK P Branch to Break Programming 

11 6   
    
  Normal Interrupt Processing 
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This coding can be inserted any place in the interrupt processing routine. 
During debugging, if the user can afford the execution time, it should be 
placed immediately after the save routine. If not, it can be put at the end 
of the polling routine which gives a priority to the polling devices as far 
as servicing the interrupts. However, it should be noted that in order not 
to lose the break, the returns from all interrupts during debugging should 
go through an equivalent routine. 
 
Once the user has determined that the break is on, a second analysis and 
correction must be made. It does not operate in a normal manner of 
holding the program counter pointing at the next location in memory 
during the BRK instruction. Because of this, the value on the stack for the 
program counter is at the break instruction plus two. If the break had 
been patched over an instruction, this is usually of no significant 
consequence to the user. However, if it is desired to process the next byte 
after the break instruction, the use of decrement memory instructions in 
the stack must be used. 
 
It is recommended that the user normally takes care of patching programs 
with break by processing a full instruction prior to returning and then use 
jump returns. 
 
An interesting characteristic about the break instruction is that its OP 
CODE is all zeros (0), therefore, BRK coding can be used to patch fusable 
link PROMS through a break to an E-ROM routine which inserts patch 
coding. 
 
An example of using the break to patch with is shown below: 
 
Example 9.8: Patching with a break utilizing PROMs 
 

Old Code FC21 LDA 
 FC22 05 
 FC23 21 
 FC24 Next OP CODE 
   
Patched FC21 BRK 00 
Code FC22 05 
 FC23 21 
 FC24 Next OP CODE 
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The interrupt vector routine points to: 
 

Patch LDA 
 06 
 21 
 JMP 
 24 
 FC 

 
This coding substitutes: 

 
 LDA 2106 
 for the 
 LDA 2105 
 coding at 
 FC21 

 
by use of the BRK and a break processing routine. 

 
9.12 MEMORY MAP 
 
A series of requirements were discussed to this point for the memory 
organization which can be illustrated by the following memory map: 
 
Hex Address 
  

 

0000 – 00FF RAM used for zero page and indirect memory addressing 
operation. 

0100 – 01FF RAM used for stack processing and for absolute addressing. 
0200 – 3FFF Normally RAM. 
4000 – 7FFF Normally I/O. 
8000 – FFF9 Program Storage normally ROM. 
FFFA Vector low address for NMI. 
FFFB Vector high address for NMI. 
FFFC Vector low address for RESET. 
FFFD Vector high address for RESET. 
FFFE Vector low address for IRQ + BRK. 
FFFF Vector high address for IRQ + BRK. 

 
The addressing schemes for I/O control between locations 4000 and 
8000 Hex, have not been fully developed. This is described in detail in 
the Hardware Manual, Chapter 2. The Zero Page addressing requires 
that RAM should be located starting in location 00. If more than one RAM 
page is necessary, RAM location 0100 through 01FF should be reserved 
for the stack or at least a portion of parts should be reserved for the 
stack with the rest of it being available to the user to use as normal RAM. 
Locations from 0200 up to 4000 are normally reserved for RAM 
expansion. 
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In small memory configurations such as are inherent in a MCS6530 class 

device, in order to minimize the addressing lines, page two (02XX) will 

be normally used for input/output as opposed to using the 40XX page 

which is used for devices which require significant amount of outboard 

RAM, ROM and I/O. 

 

Because of the fact that the MCS650X has three very important vector 

points selected in highest order memory, it is usually more useful to write 

programs with the memory storage located at a starting address which 

allows the programmer to make sure that the last address in his ROM 

contains the start and interrupt vectors. Because of these allocations, the 

user finds himself working in three directions. RAM is assigned in location 

0000 working up. I/O devices are started at location 4000 starting up 

and ROM starts at location FFFF and works down. Although this seems like 

an unusual concept, one must remember that the hardware really only 

gives performance to either end of memory and, therefore, data located 

in the middle has no priority one over the other. So starting at either end 

is just as useful a technique as starting at one end and working up. 

 

In order to take maximum advantage of the capability of the 

microprocessor, particularly when using a symbolic assembler, working 

data should be located starting in the location 0, and stack addresses 

should be reserved until after analysis of the working storage 

requirements have been completed. Program storage should start in high 

order memory with some guess as to the amount of memory required 

being taken and that being taken as a start address. However, care 

should be taken to assign the three fixed vectors almost immediately at 

least symbolically as they are all necessary for correct operation of the 

microprocessor. 

 
 
 
 
 
 
 
 



 

148 

CHAPTER 10 

 
 

SHIFT AND MEMORY MODIFY INSTRUCTIONS 
 
 
 
 
 
 
 
 
 

10.0 DEFINITION OF SHIFT AND ROTATE 
 
In many cases operations of the control systems must operate a bit at a 
time. Data is often available only bit-serial and sometimes sequential bit 
operations are the only way to solve a particular problem. In addition to 
that, in order to combine bits into a field, shift and rotate instructions are 
necessary. Multiply and divide routines all require the ability to move bits 
relative to one another in a full multiple byte field. 
 
The shift instruction is one that takes a register such as the accumulator 
and moves all of the bits in the accumulator 1 bit to the right or 1 bit to 
the left. Examples of the shift and rotate instructions in the MCS650X are 
shown below: 
 
Example 10.1: General shift and rotate 
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As you can see from our example, moving data 1 bit to the right is called 

shift right. The natural consequence of the shift right is that the input bit 

or high order bit in this case is set to 0. Moving the data in the register 1 

bit to the left is called shift left. In this case, the 0 is inserted in the low 

order position. These are the 2 shift capabilities that exist in the 

MCS650X microprocessor. 

 

It should be noted that in both cases, the bit that is shifted from the 

register, the low order bit in shift right, and the high order bit in shift left, 

is stored in the carry flag. This is to allow the programmer to test the bit 

by means of the carry branches that are available and also to allow the 

rotate capability to transfer bits in multiple precision shifts. 

 

The second part of the multiple precision shift instruction is the rotate which 

is shown in Example 10.1, in which the value of the carry bit becomes the 

low order bit of the register, and the output bit from the shift is stored in 

carry. 

 

10.1 LSR – LOGICAL SHIFT RIGHT 
 

This instruction shifts either the accumulator or a specified memory location 

1 bit to the right, with the higher bit of the result always being set to 0, 

and the low bit which is shifted out of the field being stored in the carry 

flag. 

 

The symbolic notation for LSR is

   

The shift right instruction either affects the accumulator by shifting it right 

1 or is a read/modify/write instruction which changes a specified 

memory location but does not affect any internal registers. The shift right 

does not affect the overflow flag. The N flag is always reset. The Z flag 

is set if the result of the shift is 0 and reset otherwise. The carry is set 

equal to bit 0 of the input. 

 

LSR is a read/write/modify instruction and has the following addressing 

modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X. 
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10.2 ASL – ARITHMETIC SHIFT LEFT 

 

The shift left instruction shifts either the accumulator or the address 

memory location 1 bit to the left, with the bit 0 always being set to 0 and 

the bit 7 output always being contained in the carry flag. ASL either shifts 

the accumulator left 1 bit or is a read/modify/write instruction that 

affects only memory. 

 

The symbolic notation for ASL is  

 

The instruction does not affect the overflow bit, sets N equal to the result 

bit 7 (bit 6 in the input), sets Z flag if the result is equal to 0, otherwise 

resets Z and stores the input bit 7 in the carry flag. 

 

ASL is a read/modify/write instruction and has the following addressing 

modes: Accumulator; Zero Page; Zero Page,X; Absolute; Absolute,X. 

 

10.3 ROL – ROTATE LEFT 

 

The rotate left instruction shifts either the accumulator or addressed 

memory left 1 bit, with the input carry being stored in bit 0 and with the 

input bit 7 being stored in the carry flags. 

 

The symbolic notation for ROL is 

 

The ROL instruction either shifts the accumulator left 1 bit and stores the 

carry in accumulator bit 0 or does not affect the internal registers at all. 

The ROL instruction sets carry equal to the input bit 7, sets N equal to the 

input bit 6, sets the Z flag if the result of the rotate is 0, otherwise it resets 

Z and does not affect the overflow flag at all. 

 

ROL is a read/modify/write instruction and it has the following 

addressing modes: Accumulator; Zero Page; Zero Page,X; Absolute; 

Absolute,X. 
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10.4 ROR – ROTATE RIGHT (Available on Microprocessors after June, 1976) 
  
The rotate right instruction shifts either the accumulator or addressed 

memory right 1 bit with bit 0 shifted into the carry and carry shifted into 

bit 7. 

 

The symbolic notation for ROR is 

 

The ROR instruction either shifts the accumulator right 1 bit and stores the 
carry in accumulator bit 7 or does not affect the internal registers at all. 
The ROR instruction sets carry equal to input bit 0, sets N equal to the 
input carry and sets the Z flag if the result of the rotate is 0; otherwise it 
resets Z and does not affect the overflow flag at all. 
 
ROR is a read/modify/write instruction and it has the following 
addressing modes: Accumulator; Zero Page; Absolute; Zero Page,X; 
Absolute,X. 
 

10.5 ACCUMULATOR MODE ADDRESSING 
 
As indicated, all of the shift instructions can operate on the accumulator. 
This is a special addressing mode that is unique to the shift instructions 
and operates with the following set of operations: 
  
Example 10.2: Rotate accumulator left 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0100 OP Code Fetch Next 
OP CODE 

Finish Previous Operation; 
Increment PC to 0101 

2 0101 Next 
OP Code 

Fetch Discarded 
OP CODE 

Decode Current Instruction; 
Hold P-Counter 

3 0101 Next 
OP Code 

Fetch Next 
OP CODE 

Shift Through the Adder 

4 0102 ? Fetch Second 
Byte 

Store Results into A; Interpret 
Next OP CODE 

 
As we can see, the accumulator instructions have the same effect as the 

single byte non-stack instructions in the sense that the instruction contains 

both the OP CODE and the register in which the operations are going to   

be   performed; therefore, in cycle 2, the microprocessor holds the 

program counter and in cycle 3, fetches the same program counter 
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location and starts the next instruction operation. At the same time, it is 

transferring the results from the adder into the accumulator; this is 

because of the look-ahead and pipelining characteristics of the 

MCS650X. The accumulator shift and rotate operations take only 2 cycles 

and 1 byte of memory. 

 

10.6 READ/MODIFY/WRITE INSTRUCTIONS 

 
The MCS650X has a series of instructions which allow the user to change 
the contents of memory directly with a single instruction. These instructions 
include all of the shift, rotate, increment and decrement memory 
instructions. The operation of each of these instructions is the same in that 
the addressing mode that is defined for the instruction is implemented the 
same way as if for normal instructions. After the address has been 
calculated, the effective address is used to read the memory location into 
the microprocessor arithmetic unit (ALU). The ALU performs the operation 
and then the same effective address is used to write the results back into 
memory. The most difficult operation is the addressing mode Absolute 
Indexed which is illustrated in Example 10.3 for the rotate left instruction, 
ROL. 
 
Example 10.3: Rotate memory left Absolute,X 
 

Cycle Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 
 

1 0100 OP Code Fetch 
OP CODE 

Finish Previous Operation; 
Increment PC to 0101 

2 0101 ADL Fetch ADL Decode Current Instruction; 
Increment PC to 0102 

3 0102 ADH Fetch ADH Add ADL+X, Increment PC to 
0103 

4 ADH,ADL+X ? False Read Add Carry from Previous Add 
to ADH 

5 ADH+C, 
ADL+X 

Data Fetch Value  

6 ADH+C, 
ADL+X 

? Destroy Memory Perform Rotate 
Turn on Write 

7 ADH+C, 
ADL+X 

Shifted 
Data 

Store Results Set Flags 

8 0103 OP CODE Fetch Next 
OP CODE 

Increment PC to 0104 
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Cycle 4 is a wasted cycle because read/modify/write instruction should 

wait until the carry had been added to the address high in order to avoid 

writing a false memory location. This is the same logic that is used in the 

store instruction in which the look-ahead or the short cut addressing mode 

is not taken advantage of. Cycle 4 is an intermediate read, and cycle 5 

is when the actual data that is going to be operated on is read. 

 

The address lines now hold at that address for cycles 5, 6 and 7. The 

microprocessor signals both itself and the outside world those operations 

during which it will not recognize the ready line. It does this by pulling the 

Write line. The Write line is pulled in cycle 6 because data is written into 

the memory location that is going to be written into again in cycle 7 with 

correct data. 

 
 
 
 
 
 
 
 
 
Because data bits read from memory have to be modified and returned, 
there is no pipelining effect other than the overlap of the adding in the 
address low and index register. The 7 cycles it takes to perform read/ 
modify/write Absolute Indexed,X instruction is the worst case in timing for 
any section of the machine except for interrupt. This unique ability to 
modify memory directly is perhaps best illustrated by the coding in 
Example 10.4 which is used to shift a 4-bit BCD number, which has been 
accumulated in the high 4 bits of the accumulator as part of the decoding 
operation, from the accumulator into a memory field. Figure 10.1 is a 
flow chart of this example. Examples such as this often occur in point-of-
sale terminals and other machines in which BCD data is entered 
sequentially. This example assumes that the value is keyboard entered, 
through which data is entered into the accumulator from left to right but 
has to be shifted into memory from right to left. The value in the field 
before the shift is a 1729 which after the shift will be a 17,295. 
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Flow Chart for Moving in a New BCD Number 

FIGURE 10.1 
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Example 10.4: Move a new BCD number into field 
 

 Before After 
 

Field 00 00 
 00 01 
 17 72 
 29 95 
   
Accumulator 50 00 

 
Coding 

 
Bytes  Instruction 

 
 

2  LDY 4 
set up for 4 moves 

2 LOOP–2 LDX 4 
1  ASL A  
3 LOOP–1 ROL Price –1, X  
1  DEX shift the field 1 bit 
2  BNE    LOOP–1  
1  DEY shifts four times 
    

2  BNE    LOOP–2  
    14 bytes   

 
 

There are several new concepts introduced in this example; the first is the 

use of index register Y as just a counter to count the number of times the 

character has been bit-shifted. It is a common approach to use bit shifts, 

as is implemented in the MCS650X family, to shift data into memory. The 

power of being able to communicate directly in memory is shown by 

shifting bits from one byte to the next byte using a single ROL indexed 

instruction. This example uses a loop within a loop and it should be noted 

that LOOP 1 occurs 4 times for every time LOOP 2 occurs. The internal 

loop is very important in the sense that this loop executes 16 times for the 

problem; therefore, its execution time should be optimized. 

 

In addition to having the ability to shift and rotate memory, the MCS650X 

has the ability to increment and decrement memory locations. 
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10.7 INC – INCREMENT MEMORY BY ONE 
 
This instruction adds 1 to the contents of the addressed memory location. 
  
The symbolic notation is M + 1 → M. 
 
The increment memory instruction does not affect any internal registers 
and does not affect the carry or overflow flags. If bit 7 is on as the result 
of the increment, N is set, otherwise it is reset; if the increment causes the 
result to become 0, the Z flag is set on, otherwise it is reset. 
 
The addressing modes for increment are: Zero rage; Zero Page,X; 
Absolute; Absolute,X. 
 
10.8 DEC – DECREMENT MEMORY BY ONE 
 
This instruction subtracts 1, in two's complement, from the contents of the 
addressed memory location. 
 
The symbolic notation for this instruction is M – 1 → M. 
 
The decrement instruction does not affect any internal register in the 
microprocessor. It does not affect the carry or overflow flags. If bit 7 is 
on as a result of the decrement, then the N flag is set, otherwise it is reset. 
If the result of the decrement is 0, the Z flag is set, otherwise it is reset. 
 
The addressing modes for decrement are: Zero Page; Zero Page,X; 
Absolute; Absolute,X. 
 
In many examples through the report, we have used the ability to 
increment and decrement registers in the microprocessors. The 
advantages of incrementing and decrementing in memory are that it is 
possible to keep external counters or to directly influence a bit value by 
means of these instructions. It is sometimes useful during I/O instructions. 
 
10.9 GENERAL NOTE ON READ/MODIFY/WRITE INSTRUCTIONS 
 
The ability to read, modify and write memory is unique to MCS6500 class 
microprocessors. The usefulness of the instructions is limited only by the 
user’s approach to organizing memory. Even though the instructions are 
fairly long in execution, they are significantly shorter than having to load 
and save other registers to perform the same function. Experience in 
organizing programs to take advantage of this manipulation of memory 
will allow the user to fully appreciate the power of these instructions. 
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CHAPTER 11 

 
 

PERIPHERAL PROGRAMMING 
 
 
 
 
 
 
 

11.0 REVIEW OF MCS6520 FOR I/O OPERATIONS 

 
It should be noted that in the following discussions, the major difference 

between the MCS6530 I/O and the main register of the MCS6520 is 

that the extra bit in the control register need not be used in the MCS6530. 

All registers in the MCS6530 are directly addressable. 

 
Example 11.1: The MCS6520 Register Map 
 

 
 
In Example 11.1 a programming form to describe the PIA is shown. The 

programming for is used in the Cross-Assembler and Resident Assembler 

with the MCS650X product family. The notation * = is used to define any 

location. The notation means that the assembler instruction counter is set 

equal to the value following the equal sign. The expression * = * + 1 

causes the assembler to recognize that there is one byte of memory 

associated with the term; therefore, we can see that the definition of the 

four registers PIAD, PIAC, PIBD and PIBC are consecutive memory 

locations starting at some base address, with the first byte addressed as 
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PIAD, the second byte addressed as PIAC, the third byte addressed as 

PIBD, and the fourth byte as PIBC. This is a normal way a MCS6520 

would be organized and this is the way the programming form should be 

set up. The base address is picked up by an algorithm described in the 

hardware manual but normally it is a value between 4004 and 4080 

Hex. Each MCS6520 is given a base address which works progressively 

up from 4004 Hex. 

 

In Example 11.1 two registers are shown in dotted lines. This is because 

each of the A DATA (AD) and B DATA (BD) parts of the MCS6520 are 

actually two registers having the same address, one which specifies the 

direction of each of the input/output paths (the Data Direction Register), 

the second one which is actually the connection to the input/output paths 

(the Data Register). Because of pin limitations on the MCS6520, the 

microprocessor can only directly address one of the registers at a time. 

Differentiation as to which register is being connected to the 

microprocessor is a function of bit 2 in the respective control register (AC 

and BC). If bit 2 is off, the Data Direction Register is being addressed; if 

it is on, the Data Register is being addressed. 

 

During the initialization sequence, therefore, the MCS6520 starts out with 

all registers at zero. This means that the microprocessor is addressing the 

Data Direction Register. The PIA initialization is done by writing the 

direction of the pins into the Data Direction Register (AD, BD) and then 

setting on the control flag as described below. After that, the program 

will normally be dealing with the data registers. 

  
Example 11.2: General PIA Initialization 
 

LDA # DIRECT 
Initialize Direction 

STA    PIAD 
  
LDA # CONTR 

Initialize Control 
STA    PIAC 
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Example 11.2 illustrates a general form of initialization and can be 

completed for as many PIA’s as there are in the system. 

 

 

11.1 MCS6520 INTERRUPT CONTROL 

 

The MCS6520 has a basic interrupt capability which is under control of 

the programmer. Almost all MCS6500 I/O devices that allow interrupts 

have an interrupt control register that allows the user to disable the 

interrupt. This will keep inputs which are not necessarily active from 

causing spurious interrupts which must be handled by the microprocessor. 

Examples of this are open tape loops or other signals which have high 

impedance noise sensitive inputs except when connected to some kind of 

media. In this type of application, normally the interrupt is enabled by 

some physical action from the person using the device such as loading of 

the cassette, pushing the power-on switch, etc. In the case of the 

MCS6520, there are two interrupt causing conditions for each control 

register. 

 

Each of these interrupts concern themselves with one input pin. The Control 

Register allows the programmer to decide whether or not the pin is 

sensitive to positive edge signals or negative edge signals and whether 

or not an interrupt shall occur when the selected transition has occurred. 

 

It should be noted that, therefore, it is possible for a line to cause a status 

bit to be set without causing an interrupt. The comprehensive I/O Program 

in Section 11.5 uses this combination. 
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Example 11.3: Interrupt Mode Setup 
 
Bit 7 Status Bit: Bits  1   0  Interrupt 

 
Set on Negative Edge 0   0  No 
Set on Negative Edge 0   1  Yes 
Set on Positive Edge 1   0  No 
Set on Positive Edge 1   1  Yes 
    
Bit 6 Status Bit: 
 

Bits   4   3 * Interrupt 

Set on Negative Edge 0   0  No 
Set on Negative Edge 0   1  Yes 
Set on Positive Edge 1   0  No 
Set on Positive Edge 1   1  Yes 
    

*If Bit 5 equals zero    
 
The proper combination of bits are usually determined during the design 

of the MCS6520 interconnection and form the constant which is loaded in 

the control register. The constant that is loaded in the control register 

should contain bit 2 on. For example, to allow bit 7 to be set on negative 

going signals with interrupt enable and bit 6 to be set on positive signals 

with interrupt disable, the control value would be Hex 15. 

 

With bit 3 on, the pin that controls bit 6 can be set as an output pin. The 

output pin is either controllable by the microprocessor directly or acts as 

a handshake to reflect the status of reads and writes of the data register. 

The operation of the output pins CA2, CB2 depends on how bits 5, 4, and 

3 are programmed, as shown in Example 11.4. 

 
Example 11.4: CA2, CB2 Output Control 
 

 
CA2 Output With: 

Bit 5   on 
Bit 4 

 
Bit 3 

   
Low on read or write for one cycle   0   0 
Low on read or write until bit 7 is on   0   1 
Always 0   1   0 
Always 1   1   1 
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The decision as to whether or not to use the one cycle low until bit 7 comes 
on is a hardware decision, depending on the device which is hooked to 
the pin. 
 
It should be of interest to the programmer to note that bit 6 controls pins 
known as CA2 or CB2 which can be considered to be auxiliary outputs 
which are controlled by bit 3 assuming the processor is initialized so that 
bit 5 and bit 4 are ones. 
 
Example 11.5 shows the use of controlling bit 3 using AND and OR 
instructions; however, it should be noted that this technique applies for 
any individual bit in the PIA data direction register also: 
 
Example 11.5: Routine to Change CA2 or CB2 Using Bit 3 Control 
 

Set CA2 
 

 

LDA PIAC 
ORA #$08 
STA PIAC 
  
Clear CA2 
 

 

LDA PIAC 
AND #$F7 
STA PIAC 
  
Note: $ – Direction to Assembler for Hex Notation 
 # – Direction to Assembler for Production Operator 

 
By similar techniques, every pin in the microprocessors of the MCS6520 
can be controlled. There are two particular notes to remember: 
 
1. In the MCS6520, both bit 6 and bit 7 are cleared on either side 
 by reading of the corresponding data register if bit 6 has been 
 set up as an input. This means that polling sequences for I/O 
 instructions should only read the status registers and then read 
 the data registers after the status has been determined, 
 otherwise false clearing of the status data may occur. 
 
2. Even though the handshake for the CB2 pin is on write of B data, 
 a read of B data must be done to clear bit 7. 
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11.2 IMPLEMENTATION TRICKS FOR USE OF THE MCS6520 

 PERIPHERAL INTERFACE DEVICES 

 

11.2.1 Shortcut Polling Sequences 

 

In section 9.7, the techniques for using a LOAD A to poll for interrupts was 

covered; however, the I/O devices on the MCS6520 can either set bit 6 

or bit 7 on to cause an interrupt; therefore, a different technique needs 

to be used to analyze the MCS6520 to poll a series of 6520’s each one 

of which could have caused the interrupt. It is for this purpose that the BIT 

instruction senses both bit 6 and bit 7. Coding for a full poll of a PIA is as 

shown: 

 

Example 11.6: Polling the MCS6520 

  

Interrupt Vector JMP STORE  

 LDA #C0 Set up Mask for 6 and 7 

 BIT PIAAC Check for neither 6 or 7 

 BEQ NXT1  

 BMI SEVEN If 7, go to save – otherwise clear 

   

 Process BIT  

 6 Interrupt  

NXTI   BIT PIABC  

 BEQ NXTZ  

           etc.  

 

This program takes full advantage of the BIT instruction by checking for 

both bit 7 and 6 clear. BMI to SEVEN just checks N is on and that N is a 

higher priority. If bit 6 is one, the overflow bit will also be set, allowing 

the finish of the process seven routine to test the overflow and jump back 

to the process bit 6 coding. 
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Bit 6 and bit 7 were sampled by the single BIT instruction. Speed was 

accomplished by loading the mask for just bit 6 and 7 into the register 

which allows the BEQ instruction to determine that neither of the two flags 

is on. 

 

This routine depends on the fact that in the MCS6520, if CA2 or CB2 is 

an output, bit 6 is always zero. 

 

11.2.2 Bit Organization on MCS6520’s 

 

In the microprocessor, there is a definite positional preference for the 

testing of single bits. In the MCS6520 Data Direction Register, it is 

possible to select any combinations of input/output pins by the pattern 

that is loaded in the Data Direction Register. A one bit corresponds to an 

output and a zero bit corresponds to an input. The natural tendency would 

be to use MCS6520s with all eight bits organized into a byte. There is 

relatively little advantage to organizing this way unless the eight bits are 

to be treated as a single byte by the program. This is often not the case, 

more often the bits are a collection of switches, coils, lights, etc. 

 

On such combinations, advantage should be taken of the fact that bit 7 

is directly testable so that a more useful combination of eight pins on one 

MCS6320 register would be seven outputs and a single input with the 

single input on bit 7. This organization allows the programmer to load 

and branch on that location without ever having to perform a bit or shift 

instruction to isolate a particular bit. 

 

A similar capability for setting a single bit involves the organization of 

data with seven inputs and a single output with a single output located in 

bit 0. This bit may be set or cleared by an INC or DEC instruction without 

affecting the rest of the bits in the register because the input pins ignore 

signals written from the microprocessor. Therefore, the more skilled 

MCS6500 programmer will often mix single outputs on bit 0 and a single 

input on bit 7 with bits of the corresponding opposite type. 
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11.2.3 Use of READ/MODIFY/WRITE Instruction For Keyboard 
 Encoding 

 
A rather unique use of the memory with a READ/MODIFY/WRITE 
operation involves setting the data register at all zeros, then using the 
three state output of the B side to sample a keyboard. 
 
The following Figure 11.1 shows the connection for a 64 key keyboard 
organized 8 x 8: 
 
 

 
 

 
Keyboard Encoding Matrix Diagram 

FIGURE 11.1 
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The B side is set up to act as a strobe so that each of the output lines will 

have a ground on it during one scan cycle. The eight A side data inputs 

are then sampled and decoded by the microprocessor giving a 64 key 

keyboard which is directly translatable into code. 

 

Figure 11.1 and Example 11.7 make use of the capability of the 

microprocessor to move a bit through the MCS6520 register location. This 

program also uses the compare instruction and the ability to detect a 

carry during a shift. 

 

Example 11.7: Coding for Strobing an 8 x 8 Keyboard 

 

Output Strobe is indicated by a one in Data Director Register. Any 

connection is indicated by a zero in register bit. 

 
 LDX #0 Initialize B Data Register 
 STX PIABD  
 LDA PIABC  
 AND #FB Initialize Control Register to 
 STA PIABC Address Data Direction Register 
 STX PIABC  
 SEC  
LOOP ROL PIABD Shift for strobe 
 BCS DONE 

If all sampled, Exit 
 LDA PIAAD 
 CMP #FF Check for no zeros 
 BEQ LOOP  
DONE ------------- If any zeros then process them 
   
 A PIABD can now be used to find out just what key is 

depressed. 
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Keyboard Strobe Sequence 

FIGURE 11.2 
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11.3 MCS6530 PROGRAMMING 
 
Although they have separate addressing, the Data Direction and 

Input/Output Registers operate the same as on the MCS6520. 

 

Programming of the Interval Timer has some special problems. First of all, 

the time is effectively located in all addresses from XXX4–XXXF. By 

picking the proper address, the programmer is able to control the P scale 

for the timeout. Initialization of the Interval Timer is done by a LOAD A 

followed by STORE A into the timing count. The value stored in the timing 

counter represents the number of states which the counter will count 

through. The address used to load will determine how many additional 

divisions of the basic clock cycle will be counted. 

 

When the counter finally counts to zero, it continues to count past zero at 

the one cycle clock rate in order to give the user an opportunity to sample 

the Status Register, then come back and read the Mount Register to 

determine how long it has been since an interrupt occurred. Servicing an 

interrupt is the same for this Control Register as for any other interrupting 

register. Bit 7 is set on in the Status Register to indicate that the Interval 

Timer is in the interrupt state and bit 7 is reset by the reading of the 

Counter. 

 

11.3.1 Reading of the Counter Register 

 
Because of the nature of counting past zero, the number in the Count 

Register is in two’s complement form. It can be added directly to and 

used to correct the next count in a sequential string of counts or for 

correction for one cycle accuracy. 

 

11.4 HOW TO ORGANIZE TO IMPLEMENT CODING 

 
The specific details of organizing to get coding assembled is a function 
of the software that is used to implement the coding. Two software 
programs are currently available for the MCS650X family. 
 
The Cross Assembler is available on various time share systems or for 

batch use on the user's system. Its documentation is covered in the Cross-
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Assembler Manual, publication number 6500-60. The Resident Assembler 

is available in the Microcomputer Development Terminal, as well as for 

sale in ROMs. The documentation for this is covered in the Resident 

Assembler Manual, publication number 6500-65. 

 

The major advantages of using an assembler are that the assembler takes 

mnemonics and labels and calculates the fixed code. Reference to the OP 

CODE tables in the appendix shows that coding in Hex is quite difficult 

because there is no ordered pattern to the instruction Hex codes. 

 

The Cross Assembler or Resident Assembler allows one to specify all 

inputs and outputs in symbolic form on a documented listing. Symbolic 

addressing is a technique which has the following advantages over 

numerical addressing: 

 

1. It allows the user to postpone until the last minute actual memory 

 allocation in a program which is being developed. In a 

 microprocessor that has memory-oriented features such as Zero 

 Page, memory management is important. It is desirable to have 

 as many as possible of the read/write values in the Zero Page. 

 However, until the coding is complete, the organization of Zero 

 Page may be in doubt. Values which are originally assigned in 

 Zero Page may not be as valuable there after some analysis of 

 the coding either indicates that the applications of these values 

 use indirect references or indexing by Y which does not allow the 

 program to really take advantage of Zero Page locations 

 whereas some other code which may not be as frequently used 

 might still result in a code reduction by use of Zero Page. This 

 allocation, if all the fields are defined symbolically, can be done 

 on the final assembly without any changing in the user’s codes. 

 

2. Use of symbolic addresses for programming branches leads to 

 a better documented program and as one soon determines 

 calculation of relative branches is difficult and subject to change 
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 any time a coding change is made. For example, if one has 

 organized a program with a loop in which three or four branches 

 all return to the same point and then discovers a programming 

 error which requires a single instruction to be added between the 

 return point and various branches, each branch would have to be 

 edited and recalculated. The symbolic assembler accomplishes 

 this automatically on the next assembly pass. 

 

11.4.1 Label Standards 

 

The MCS650X assemblers have been done on a reserve word basis in 

which the various mnemonics which have been described are always 

considered to be OP CODE mnemonics. lf any three character fields 

exactly match a mnemonic then the assembler assumes that the field is an 

OP CODE and proceeds to evaluate the addressing. Any other label may 

be located in free form anywhere in the coding. This means that one 

should organize one’s labels such that he never has a three character 

label which inadvertently might be considered an OP CODE. The easiest 

way to accomplish this is to always follow a pattern on labels. 

 

Good programming practice requires that the user develop a systems 

flow chart for his own basic program and individual flow charts for 

subroutines before starting the coding. From the time the routine is flow 

charted, it is very easy for the user to then assign a mnemonic label to 

the basic subroutine. 

 

In this text, notations like LOOP, LOOP 1, etc. are used. In an ADD, loop 

would be ADLP. 

 

The MCS650X assembler allows six spaces for labels. It is good practice 

to use two characters to generally identify the subroutine, two more 

characters for mnemonic purposes and then a numbering system which 

allows correlation between various addresses within a LOOP within a 

subroutine. By strictly numbering such that ADLP1 is different from ADLP3, 

each can be addresses within the same LOOP. 
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It is assumed that the PIA’s are connected in the normal manner of Status 
Register Address equal to Data Register Address + 1. 
 
The following table and flow chart defines the program implemented in 
the example. 
 
 
 
Table #1 contains the address of all of the MCS6520 Status Registers. 
 
Table #2 contains the address of the put-away location for the respective 
data. 
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Using six character labels, there are a hundred combinations of code 

which could be used in a given routine or loop without the user having to 

think through the rest of mnemonic notation. The use of characters plus a 

numeric for all references is sound programming practice. The advantage 

of using this technique allows one to use three character mnemonics 

without ever interfering with the reserve word of the microprocessor OP 

CODE mnemonics because they never have a numeric in the mnemonic. 

 

11.5 COMPREHENSIVE I/O PROGRAM 

 

Figure 11.3 demonstrates the program flow in support of the Cross- 

Assembler listing (Example 11.8) of a time-sharing routine of a program 

which illustrates the use of the indexed indirect to perform a search of 

eight devices which have active signals for servicing. The implementation 

of the eight devices is done in HCS6520's where the MCS6520 status is 

set up to be a flag in bit 7 of a Control Register. 
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Program Flow – Polling for Active Signal 

FIGURE 11.3 
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Example 11.8: Polling for Active Signal 
 
CARD = LOC  CODE CARD  

3     
4     
5   AH SYSTEMS BENCHMARK = 5 – POLLING 8 PERIPHERALS 
6     
7     
8     
9   SET TABLES AND STORAGE AREAS 

10     
11 0000   *=$02 INITIALIZE PC 
12 0002 05 40 TABLE1 .WORD PIA1AC TABLE OF PIA PERIPHERAL CONTROL 
13 0004 07 40  .WORD PIA1BC  
14 0006 09 40  .WORD PIA2AC  
15 0008 0B 40  .WORD PIA2BC  
16 000A 11 40  .WORD PIA3AC  
17 000C 13 40  .WORD PIA3BC  
18 000E 21 40  .WORD PIA4AC  
19 0010 23 40  .WORD PIA4BC  
20 0012 00 02 TABLE2 .WORD STORE1 POINTERS TO STORE INPUT DATA FROM PERIPHERALS 
21 0014 50 02  .WORD STORE2  
22 0016 A0 02  .WORD STORE3  
23 0018 F0 02  .WORD STORE4  
24 001A 40 03  .WORD STORE5  
25 001C 90 03  .WORD STORE6  
26 001E E0 03  .WORD STORE7  
27 0020 30 04  .WORD STORE8  
28      
29 0022   *=$200 SET SPACE FOR DATA INPUT ON PAGE 2 
30 0200  STORE1 *=*+80 FOR EACH DEVICE SET BUFFER 80 CHARACTERS LONG 
31 0250  STORE2 *=*+80  
32 02A0  STORE3 *=*+80  
33 02F0  STORE4 *=*+80  
34 0340  STORE5 *=*+80  
35 0390  STORE6 *=*+80  
36 03E0  STORE7 *=*+80  
37 0430  STORE8 *=*+80  
38      
39      
40   MAIN PROGRAM  
41      
42 0480   *=$FC00  

 
 
 
 
 
 

 

    

43 FC00 A2 10 PLOP1 LDX=016 INITIALIZE INDEX REGISTER X WITH 16 
44 FC02 A1 00 PLOP2 LDA (TABLE1–2,X) INDIRECT ADDRESSING OF PERIPHERAL CONTROL 
45 FC04 30 06  BMI DOIT IF FLAG SET BRANCH AND SERVICE THE DEVICE 
46 FC06 CA  DEX IF NOT SEARCH NEXT ONE 
47 FC07 CA  DEX  
48 FC08 D0 F8  BNE PLOP2  
49 FC0A F0 F4  BEQ PLOP1 START AGAIN TO POLL FROM THE BEGINNING 
50      
51   SERVICE ROUTINE  
52      
53 FC0C D6 00 DOIT DEC TABLE1–2,X MOVE THE POINTER TO PIA DATA REGISTER 
54 FC0E A1 00  LDA (TABLE1–2,X) READ DATA IN 
55 FC10 81 10  STA (TABLE2–2,X) STORE THE DATA INTO THE BUFFER 
56 FC12 F6 10  INC TABLE2–2,X SET BUFFER POINTER TO NEXT LOCATION 
57 FC14 F6 00  INC TABLE1–2,X  
58 FC16 D0 E8  BNE PLOP1 WHEN DONE START FROM THE BEGINNING AGAIN 
59      
60      
61   ASSIGN PIA LOCATION  
62      
63 FC18   *=$4004  
64 4004  PIA1AD *=*+1 FIRST PERIPHERAL 
65 4005  PIA1AC *=*+1  
66 4006  PIA1BD *=*+1 SECOND 
67 4007  PIA1BC *=*+1  
68 4008   *=$4008  
69 4008  PIA2AD *=*+1 THIRD 
70 4009  PIA2AC *=*+1  
71 400A  PIA2BD *=*+1 FOURTH 
72 400B  PIA2BC *=*+1  
73 400C   *=$4010  
74 4010  PIA3AD *=*+1 FIFTH 
75 4011  PIA3AC *=*+1  
76 4012  PIA3BD *=*+1 SIXTH 
77 4013  PIA3BC *=*+1  
78 4014   *=$4020  
79 4020  PIA4AD *=*+1 SEVENTH 
80 4021  PIA4AC *=*+1  
81 4022  PIA4BD *=*+1 EIGHTH 
82 4023  PIA4BC *=*+1  
83    .END END OF PROGRAM 
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A.1 INTRODUCTION 

 

The microprocessor instruction set is divided into three basic groups. The 

first group has the greatest addressing flexibility and consists of the most 

general purpose instructions such as Load, Add, Store, etc. The second 

group includes the Read, Modify, Write instructions such as Shift, 

Increment, Decrement and the Register X movement instructions. The third 

group contains all the remaining instructions, including all stack 

operations, the register Y, compares for X and Y and instructions which 

do not fit naturally into Group One or Group Two. 

 

There are eight Group One instructions, eight Group Two instructions, and 

all of the 39 remaining instructions are Group Three instructions. 

 

The three groups are obtained by organizing the OP CODE pattern to 

give maximum addressing flexibility (16 addressing combinations) to 

Group One, to give eight combinations to Group Two instructions and the 

Group Three instructions are basically individually decoded. 

 

A.2 GROUP ONE INSTRUCTIONS 

 

These instructions are: Add With Carry (ADC), (AND), Compare (CMP), 

Exclusive Or (EOR), Load A (LDA), Or (ORA), Subtract With Carry (SBC), 

and Store A (STA). Each of these instructions has a potential for 16 

addressing modes. However, in the MCS6501 through MCS6505, only 

eight of the available modes have been used. 

 

Addressing modes for Group One are: Immediate, Zero Page, Zero Page 

Indexed by X, Absolute, Absolute Indexed by X, Absolute Indexed by Y, 

Indexed Indirect, Indirect Indexed. The unused eight addressing modes 

are to be used in future versions of the MCS650X product family to allow 

addressing of additional on-chip registers, of on-chip I/O ports, and to 

allow two byte word processing. 
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A.3 GROUP TWO INSTRUCTIONS 

 

Group Two instructions are primarily Read, Modify, Write instructions. 

There are really two subcategories within the Group Two instructions. The 

components of the first group are shift and rotate instructions and are: 

Shift Right (LSR), Shift Left (ASL), Rotate Left (ROL), and Rotate Right 

(ROR). 

 

The second subgroup includes the Increment (INC) and Decrement (DEC) 

instructions and the two index register X instructions, Load X (LDX) and 

Store X (STX). These instructions would normally have eight addressing 

modes available to them because of the bit pattern. However, to allow 

for upward expansion, only the following addressing modes have been 

defined: Zero Page, Zero Page Indexed by X, Absolute, Absolute 

Indexed by X, and a special Accumulator (or Register) mode. The four 

shift instructions all have register A operations; the incremented or 

decremented Load X and Store X instructions also have accumulator 

modes although the Increment and Decrement Accumulator has been 

reserved for other purposes. Load X from A has been assigned its own 

mnemonic, TAX. Also included in this group are the special functions of 

Decrement X which is one of the special cases of Store X. Included also in 

this group in the X decodes are the TXS and TSX instructions. 

 

All Group One instructions have all addressing modes available to each 

instruction. In the case of Group Two instructions, another addressing 

mode has been added; that of the accumulator and the other special 

decodes have also been implemented in this basic group. However, the 

primary function of Group Two instructions is to perform some memory 

operation using the appropriate index. 

 

It should be noted for documentation purposes that the X instructions have 

a special mode of addressing in which register Y is used for all indexing 

operations; thus, instead of Zero Page Indexed by X, X instructions have 

Zero Page Indexed by Y, and instead of having Absolute Indexed by X, 

X instructions have Absolute Indexed by Y. 
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A.4 GROUP THREE INSTRUCTIONS 

 

There are really two major classifications of Group Three instructions; the 

modify Y register instructions, Load Y (LDY), Store Y (STY), Compare Y 

(CPY), and Compare X (CPX), instructions actually occupy about half of 

the OP CODE space for the Group Three instructions. Increment X (INX) 

and Increment Y (INY) are special subsets of the Compare X and 

Compare Y instructions and all of the branch instructions are in the Group 

Three instructions. 

 

Instructions in this group consist of all of the branches: BCC, BCS, BEQ, 

BMI, BNE, BPL, BPC and BPS. All of the flag operations are also devoted 

to one addressing mode; they are: CLC, SEC, CLD, SED, CLI, SEI and CLV. 

All of the push and pull instructions and stack operation instructions are 

Group Three instructions. These include: BRK, JSR, PHA, PHP, PLA and PLP. 

The JMP and BIT instructions are also included in this group. There is no 

common addressing mode available to members of this group. Load Y, 

Store Y, BIT, Compare X and Compare Y have Zero Page and Absolute, 

and all of the Y and X instructions allow Zero Page Indexed operations 

and Immediate.  
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THE FOLLOWING NOTATION APPLIES TO THIS SUMMARY: 

 

 

A Accumulator 

X, Y Index Registers 

M Memory 

P Processor Status Register 

S Stack Pointer 

� Change 

 _ No Change 

+ Add 

Ʌ Logical AND 

– Subtract 

⊻ Logical Exclusive OR 

↑ Transfer from Stack 

↓ Transfer to Stack 

→ Transfer to 

← Transfer from 

∨ Logical OR 

PC Program Counter 

PCH Program Counter High 

PCL Program Counter Low 

Oper Operand 

# Immediate Addressing Mode 

 

 

NOTE: At the top of each table is located in parenthesis a reference number 

 (Ref: XX) which directs the user to that Section in the MCS6500 

 Microcomputer Family Programming Manual in which the instruction is 

 defined and discussed. 
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ADC Add Memory to Accumulator with Carry ADC 

 N Ƶ C I D V 

Operation: A + M + C → A, C � � � _ _ � 

(Ref:   2.2.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate ADC # Oper 69 2 2 

Zero Page ADC  Oper 65 2 3 

Zero Page, X ADC  Oper, X 75 2 4 

Absolute ADC  Oper 6D 3 4 

Absolute, X ADC  Oper, X 7D 4 4* 

Absolute, Y ADC  Oper, Y 79 3 4* 

(Indirect, X) ADC  (Oper, X) 61 2 6 

(Indirect), Y ADC  (Oper), Y 71 2 5* 

*Add 1 if page boundary is crossed 

 

 

 

AND “AND” Memory with Accumulator AND 

Logical AND to the accumulator N Ƶ C I D V 

Operation: A ɅɅɅɅ M → A � � _ _ _ _ 

(Ref:   2.2.4.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate AND # Oper 29 2 2 

Zero Page AND  Oper 25 2 3 

Zero Page, X AND  Oper, X 35 2 4 

Absolute AND  Oper 2D 3 4 

Absolute, X AND  Oper, X 3D 3 4* 

Absolute, Y AND  Oper, Y 39 3 4* 

(Indirect, X) AND  (Oper, X) 21 2 6 

(Indirect), Y AND  (Oper), Y 31 2 5 

*Add 1 if page boundary is crossed 
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ASL Shift Left One Bit (Memory or Accumulator) ASL 

 N Ƶ C I D V 

Operation:  � � � _ _ _ 

(Ref:   10.2) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Accumulator ASL  A 0A 1 2 

Zero Page ASL  Oper 06 2 5 

Zero Page, X ASL  Oper, X 16 2 6 

Absolute ASL  Oper 0E 3 6 

Absolute, X ASL  Oper, X 1E 3 7 

 

 

 

 

 

 

BCC Branch on Carry Clear BCC 

 N Ƶ C I D V 

Operation: Branch on C = 0 _ _ _ _ _ _ 

(Ref:   4.1.2.3) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Relative BCC  Oper 90 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 
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BCS Branch on Carry Set BCS 

 N Ƶ C I D V 

Operation: Branch on C = 1 _ _ _ _ _ _ 

(Ref:   4.1.2.4) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Relative BCS  Oper B0 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to next page. 

 

 

 

 

 

 

 

 

BEQ Branch on Result Zero BEQ 

 N Ƶ C I D V 

Operation: Branch on Ƶ = 1 _ _ _ _ _ _ 

(Ref:   4.1.2.5) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Relative BEQ  Oper F0 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to next page. 
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BIT Test Bits in Memory with Accumulator BIT 

Bit 6 and 7 are transferred to the Status Register. 

If the result of A ɅɅɅɅ M is zero then Ƶ = 1, otherwise Ƶ = 0. N Ƶ C I D V 

Operation: A ɅɅɅɅ M, M7 → N, M6 → V M7 � _ _ _ M6 

(Ref:   4.2.2.1) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Zero Page BIT  Oper 24 2 3 

Absolute BIT  Oper 2C 3 4 

 

 

 

 

 

 

 

BMI Branch on Result Minus BMI 

 N Ƶ C I D V 

Operation: Branch on N = 1 _ _ _ _ _ _ 

(Ref:   4.1.2.1) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Relative BMI  Oper 30 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 
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BNE Branch on Result Not Zero BNE 

 
N Ƶ C I D V 

Operation: Branch on Ƶ = 0 _ _ _ _ _ _ 

(Ref:   4.1.2.6) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Relative BNE  Oper D0 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 

 

 

 

 

BPL Branch on Result Plus BPL 

 
N Ƶ C I D V 

Operation: Branch on N = 0 _ _ _ _ _ _ 

(Ref:   4.1.2.2) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Relative BPL  Oper 10 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 
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BRK 
Force Break 

BRK 

 

N Ƶ C I D V 

Operation: Forced Interrupt PC + 2 ↓ P ↓ _ _ _ 1 _ _ 

(Ref:   9.11) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Implied BRK   00 1 7 

1. A BRK command cannot be masked by setting I. 

 

 

 

BVC Branch on Overflow Clear BVC 

 
N Ƶ C I D V 

Operation: Branch on V = 0 _ _ _ _ _ _ 

(Ref:   4.1.2.8) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Relative BVC  Oper 50 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 
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BVS Branch on Overflow Set BVS 

 
N Ƶ C I D V 

Operation: Branch on V = 1 _ _ _ _ _ _ 

(Ref:   4.1.2.7) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Relative BVS  Oper 70 2 2* 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 

 

 

 

 

 

CLC Clear Carry Flag CLC 

 
N Ƶ C I D V 

Operation: 0 → C _ _ 0 _ _ _ 

(Ref:   3.0.2) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Implied CLC   18 1 2 
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CLD Clear Decimal Mode CLD 

 
N Ƶ C I D V 

Operation: 0 →  D _ _ _ _ 0 _ 

(Ref:   3.3.2) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Implied CLD   D8 1 2 

 

 

 

 

 

CLI Clear Interrupt Disable Bit CLI 

 
N Ƶ C I D V 

Operation: 0 →  I _ _ _ 0 _ _ 

(Ref:   3.2.2) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Implied CLI   58 1 2 
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CLV Clear Overflow Flag CLV 

 
N Ƶ C I D V 

Operation: 0 →  V _ _ _ _ _ 0 

(Ref:   3.6.1) 

Addressing 

Mode 
Assembly Language Form 

OP 

CODE 

No. 

Bytes 

No. 

Cycles 

Implied CLV   B8 1 2 

 

 

 

 

 

CMP Compare Memory and Accumulator CMP 
 

N Ƶ C I D V 

Operation: A – M � � � _ _ _ 

(Ref:   4.2.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate CMP # Oper C9 2 2 

Zero Page CMP  Oper C5 2 3 

Zero Page, X CMP  Oper, X D5 2 4 

Absolute CMP  Oper CD 3 4 

Absolute, X CMP  Oper, X DD 3 4* 

Absolute, Y CMP  Oper, Y D9 3 4* 

(Indirect, X) CMP  (Oper, X) C1 2 6 

(Indirect), Y CMP  (Oper), Y D1 2 5* 

*Add 1 if page boundary is crossed. 
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CPX Compare Memory and Index X CPX 
 

N Ƶ C I D V 

Operation: X – M � � � _ _ _ 

(Ref:   7.8) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate CPX # Oper E0 2 2 

Zero Page CPX  Oper E4 2 3 

Absolute CPX  Oper EC 3 4 

 

 

 

 

CPY Compare Memory and Index Y CPY 
 

N Ƶ C I D V 

Operation: Y – M � � � _ _ _ 

(Ref:   7.9) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate CPY # Oper C0 2 2 

Zero Page CPY  Oper C4 2 3 

Absolute CPY  Oper CC 3 4 
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DEC 
Decrement Memory by One 

DEC 

 
N Ƶ C I D V 

Operation: M – 1  →  M � � _ _ _ _ 

(Ref:   10.8) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Zero Page DEC  Oper C6 2 5 

Zero Page, X DEC  Oper, X D6 2 6 

Absolute DEC  Oper CE 3 6 

Absolute, X DEC  Oper, X DE 3 7 

 

 

 

 

 

DEX 
Decrement Index X by One 

DEX 

 
N Ƶ C I D V 

Operation: X – 1  →  X � � _ _ _ _ 

(Ref:   7.6) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied DEX   CA 1 2 
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DEY 
Decrement Index Y by One 

DEY 

 
N Ƶ C I D V 

Operation: Y – 1  →  Y � � _ _ _ _ 

(Ref:   7.7) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied DEY   88 1 2 

 

 

 

 

 

EOR “Exclusive-OR ” Memory with Accumulator EOR 
 

N Ƶ C I D V 

Operation: A ⊻⊻⊻⊻ M  →  A � � _ _ _ _ 

(Ref:   2.2.4.3) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate EOR # Oper 49 2 2 

Zero Page EOR  Oper 45 2 3 

Zero Page, X EOR  Oper, X 55 2 4 

Absolute EOR  Oper 4D 3 4 

Absolute, X EOR  Oper, X 5D 3 4* 

Absolute, Y EOR  Oper, Y 59 3 4* 

(Indirect, X) EOR  (Oper, X) 41 2 6 

(Indirect), Y EOR  (Oper), Y 51 2 5* 

* Add 1 if page boundary is crossed. 
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INC Increment Memory by One INC 
 

N Ƶ C I D V 

Operation: M + 1  →  M � � _ _ _ _ 

(Ref:   10.7) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Zero Page INC  Oper E6 2 5 

Zero Page, X INC  Oper, X F6 2 6 

Absolute INC  Oper EE 3 6 

Absolute, X INC  Oper, X FE 3 7 

 

 

 

 

 

INX Increment Index X by One INX 
 

N Ƶ C I D V 

Operation: X + 1  →  X � � _ _ _ _ 

(Ref:   7.4) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied INX   E8 1 2 
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INY 
Increment Index Y by One 

INY 

 
N Ƶ C I D V 

Operation: Y + 1  →  Y � � _ _ _ _ 

(Ref:   7.5) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied INY   C8 1 2 

 

 

 

 

 

 

 

JMP 
Jump to New Location 

JMP 

 
N Ƶ C I D V 

Operation: (PC + 1)  →  PCL 

                 (PC + 2)  →  PCH 
 

_ _ _ _ _ _ 

(Ref:   4.0.2) 
(Ref:   9.8.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Absolute JMP  Oper 4C 3 3 

Indirect JMP  (Oper) 6C 3 5 
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JSR 
Jump to New Location Saving Return Address 

JSR 

 
N Ƶ C I D V 

Operation: PC + 2 ↓ , (PC + 1)  →  PCL 

                                (PC + 2)  →  PCH 
 

_ _ _ _ _ _ 

(Ref:   8.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Absolute JSR  Oper 20 3 6 

 

 

 

 

 

LDA 
Load Accumulator with Memory 

LDA 

 
N Ƶ C I D V 

Operation: M  →  A � � _ _ _ _ 

(Ref:   2.1.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate LDA # Oper A9 2 2 

Zero Page LDA  Oper A5 2 3 

Zero Page, X LDA  Oper, X B5 2 4 

Absolute LDA  Oper AD 3 4 

Absolute, X LDA  Oper, X BD 3 4* 

Absolute, Y LDA  Oper, Y B9 3 4* 

(Indirect, X) LDA  (Oper, X) A1 2 6 

(Indirect), Y LDA  (Oper), Y B1 2 5* 

* Add 1 if page boundary is crossed. 
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LDX Load Index X with Memory LDX 
 

N Ƶ C I D V 

Operation: M  →  X � � _ _ _ _ 

(Ref:   7.0) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate LDX # Oper A2 2 2 

Zero Page LDX  Oper A6 2 3 

Zero Page, Y LDX  Oper, Y B6 2 4 

Absolute LDX  Oper AE 3 4 

Absolute, Y LDX  Oper, Y BE 3 4* 

* Add 1 when page boundary is crossed. 

 

 

 

 

 

LDY Load Index Y with Memory LDY 
 

N Ƶ C I D V 

Operation: M  →  Y � � _ _ _ _ 

(Ref:   7.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate LDY # Oper A0 2 2 

Zero Page LDY  Oper A4 2 3 

Zero Page, Y LDY  Oper, Y B4 2 4 

Absolute LDY  Oper AC 3 4 

Absolute, X LDY  Oper, X BC 3 4* 

* Add 1 when page boundary is crossed. 
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LSR Shift Right One Bit (Memory or Accumulator) LSR 
 

N Ƶ C I D V 

Operation:  0 � � _ _ _ 

(Ref:   10.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Accumulator LSR  A 4A 1 2 

Zero Page LSR  Oper 46 2 5 

Zero Page, X LSR  Oper, X 56 2 6 

Absolute LSR  Oper 4E 3 6 

Absolute, X LSR  Oper, X 5E 3 7 

 

 

 

 

 

NOP No Operation NOP 
 

N Ƶ C I D V 

Operation: No Operation (2 cycles) _ _ _ _ _ _ 

 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied NOP   EA 1 2 
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ORA “OR” Memory with Accumulator ORA 
 

N Ƶ C I D V 

Operation: A ∨∨∨∨ M → A � � _ _ _ _ 

(Ref:   2.2.4.2) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate ORA # Oper 09 2 2 

Zero Page ORA  Oper 05 2 3 

Zero Page, X ORA  Oper, X 15 2 4 

Absolute ORA  Oper 0D 3 4 

Absolute, X ORA  Oper, X 1D 3 4* 

Absolute, Y ORA  Oper, Y 19 3 4* 

(Indirect, X) ORA  (Oper, X) 01 2 6 

(Indirect), Y ORA  (Oper), Y 11 2 5* 

* Add 1 on page crossing. 

 

 

 

 

 

PHA Push Accumulator on Stack PHA 
 

N Ƶ C I D V 

Operation: A ↓ _ _ _ _ _ _ 

(Ref: 8.5) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied PHA   48 1 3 
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PHP Push Processor Status on Stack PHP 
 

N Ƶ C I D V 

Operation: P ↓ _ _ _ _ _ _ 

(Ref: 8.11) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied PHP   08 1 3 

 

 

 

 

 

PLA 
Pull Accumulator from Stack 

PLA 

 
N Ƶ C I D V 

Operation: A ↑ � � _ _ _ _ 

(Ref: 8.6) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied PLA   68 1 4 
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PLP 
Pull Processor Status from Stack 

PLP 

 
N Ƶ C I D V 

Operation: P ↑ From Stack 

(Ref: 8.12) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied PLP   28 1 4 

 

 

 

 

 

ROL 
Rotate One Bit Left (Memory or Accumulator) 

ROL 

 
N Ƶ C I D V 

Operation:  � � � _ _ _ 

(Ref:   10.3) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Accumulator ROL  A 2A 1 2 

Zero Page ROL  Oper 26 2 5 

Zero Page, X ROL  Oper, X 36 2 6 

Absolute ROL  Oper 2E 3 6 

Absolute, X ROL  Oper, X 3E 3 7 
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ROR 
Rotate One Bit Right (Memory or Accumulator) 

ROR 

 
N Ƶ C I D V 

Operation:  � � � _ _ _ 

(Ref:   10.4) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Accumulator ROR  A 6A 1 2 

Zero Page ROR  Oper 66 2 5 

Zero Page, X ROR  Oper, X 76 2 6 

Absolute ROR  Oper 6E 3 6 

Absolute, X ROR  Oper, X 7E 3 7 

NOTE: ROR instruction is available on MCS650X microprocessors after June, 1976. 

 

 

RTI Return from Interrupt RTI 
 

N Ƶ C I D V 

Operation: P ↑ PC ↑ From Stack 

(Ref: 9.6) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied RTI   40 1 6 

 

 

RTS Return from Subroutine RTS 
 

N Ƶ C I D V 

Operation: PC ↑, PC + 1 →  PC _ _ _ _ _ _ 

(Ref: 8.2) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied RTS   60 1 6 
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SBC Subtract Memory from Accumulator with Borrow SBC 

Operation: A – M – C   →  A 
N Ƶ C I D V 

Note: C  = Borrow         
� � � _ _ � 

(Ref:   2.2.2) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Immediate SBC # Oper E9 2 2 

Zero Page SBC  Oper E5 2 3 

Zero Page, X SBC  Oper, X F5 2 4 

Absolute SBC  Oper ED 3 4 

Absolute, X SBC  Oper, X FD 3 4* 

Absolute, Y SBC  Oper, Y F9 3 4* 

(Indirect, X) SBC  (Oper, X) E1 2 6 

(Indirect), Y SBC  (Oper), Y F1 2 5* 

*Add 1 when page boundary is crossed. 

 

 

 

SEC Set Carry Flag SEC 
 

N Ƶ C I D V 

Operation: 1 →  C _ _ 1 _ _ _ 

(Ref: 3.0.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied SEC   38 1 2 
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SED Set Decimal Mode SED 
 

N Ƶ C I D V 

Operation: 1 →  D _ _ _ _ 1 _ 

(Ref: 3.3.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied SED   F8 1 2 

 

 

 

 

 

SEI Set Interrupt Disable Status SEI 
 

N Ƶ C I D V 

Operation: 1 →  I _ _ _ 1 _ _ 

(Ref: 3.2.1) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied SEI   78 1 2 
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STA Store Accumulator in Memory STA 
 

N Ƶ C I D V 

Operation: A  →  M _ _ _ _ _ _ 

(Ref:   2.1.2) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Zero Page STA  Oper 85 2 3 

Zero Page, X STA  Oper, X 95 2 4 

Absolute STA  Oper 8D 3 4 

Absolute, X STA  Oper, X 9D 3 5 

Absolute, Y STA  Oper, Y 99 3 5 

(Indirect, X) STA  (Oper, X) 81 2 6 

(Indirect), Y STA  (Oper), Y 91 2 6 

 

 

STX Store Index X in Memory STX 
 

N Ƶ C I D V 

Operation: X  →  M _ _ _ _ _ _ 

(Ref:   7.2) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Zero Page STX  Oper 86 2 3 

Zero Page, Y STX  Oper, Y 96 2 4 

Absolute STX  Oper 8E 3 4 
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STY 
Store Index Y in Memory 

STY 

 
N Ƶ C I D V 

Operation: Y  →  M _ _ _ _ _ _ 

(Ref:   7.3) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Zero Page STY  Oper 84 2 3 

Zero Page, X STY  Oper, X 94 2 4 

Absolute STY  Oper 8C 3 4 

 

 

 

 

 

TAX 
Transfer Accumulator to Index X 

TAX 

 
N Ƶ C I D V 

Operation: A →  X � � _ _ _ _ 

(Ref: 7.11) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied TAX   AA 1 2 
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TAY 
Transfer Accumulator to Index Y 

TAY 

 
N Ƶ C I D V 

Operation: A →  Y � � _ _ _ _ 

(Ref: 7.13) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied TAY   A8 1 2 

 

 

 

 

 

TYA Transfer Index Y to Accumulator TYA 
 

N Ƶ C I D V 

Operation: Y →  A � � _ _ _ _ 

(Ref: 7.14) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied TYA   98 1 2 
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TSX Transfer Stack Pointer to Index X TSX 
 

N Ƶ C I D V 

Operation: S →  X � � _ _ _ _ 

(Ref: 8.9) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied TSX   BA 1 2 

 

 

TXA Transfer Index X to Accumulator TXA 
 

N Ƶ C I D V 

Operation: X →  A � � _ _ _ _ 

(Ref: 7.12) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied TXA   8A 1 2 

 

 

TXS Transfer Index X to Stack Pointer TXS 
 

N Ƶ C I D V 

Operation: X →  S _ _ _ _ _ _ 

(Ref: 8.8) 

Addressing 
Mode 

Assembly Language Form 
OP 

CODE 
No. 

Bytes 
No. 

Cycles 

Implied TXS   9A 1 2 
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APPENDIX C 
 

INSTRUCTION ADDRESSING 
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APPENDIX D 
 

OPERATION CODE INSTRUCTION ADDRESSING 

 

 

 

HEXADECIMAL SEQUENCE 
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00 – BRK 20 – JSR 

01 – ORA – (Indirect, X) 21 – AND – (Indirect, X) 

02 – Future Expansion 22 – Future Expansion 

03 – Future Expansion 23 – Future Expansion 

04 – Future Expansion 24 – BIT – Zero Page 

05 – ORA – Zero Page 25 – AND – Zero Page 

06 – ASL – Zero Page 26 – ROL – Zero Page 

07 – Future Expansion 27 – Future Expansion 

08 – PHP 28 – PLP 

09 – ORA – Immediate 29 – AND – Immediate 

0A – ASL – Accumulator 2A – ROL – Accumulator 

0B – Future Expansion 2B – Future Expansion 

0C – Future Expansion 2C – BIT – Absolute 

0D – ORA – Absolute 2D – AND – Absolute 

0E – ASL – Absolute 2E – ROL – Absolute 

0F – Future Expansion 2F – Future Expansion 

10 – BPL 30 – BMI 

11 – ORA – (Indirect), Y 31 – AND – (Indirect), Y 

12 – Future Expansion 32 – Future Expansion 

13 – Future Expansion 33 – Future Expansion 

14 – Future Expansion 34 – Future Expansion 

15 – ORA – Zero Page, X 35 – AND – Zero Page, X 

16 – ASL – Zero Page, X 36 – ROL – Zero Page, X 

17 – Future Expansion 37 – Future Expansion 

18 – CLC 38 – SEC 

19 – ORA – Absolute, Y 39 – AND – Absolute, Y 

1A – Future Expansion 3A – Future Expansion 

1B – Future Expansion 3B – Future Expansion 

1C – Future Expansion 3C – Future Expansion 

1D – ORA – Absolute, X 3D – AND – Absolute, X 

1E – ASL – Absolute, X 3E – ROL – Absolute, X 

1F – Future Expansion 3F – Future Expansion 

 

 



 

 

D-3 

40 – RTI 60 – RTS 

41 – EOR – (Indirect, X) 61 – ADC – (Indirect, X) 

42 – Future Expansion 62 – Future Expansion 

43 – Future Expansion 63 – Future Expansion 

44 – Future Expansion 64 – Future Expansion 

45 – EOR – Zero Page 65 – ADC – Zero Page 

46 – LSR – Zero Page 66 – ROR – Zero Page 

47 – Future Expansion 67 – Future Expansion 

48 – PHA 68 – PLA 

49 – EOR – Immediate 69 – ADC – Immediate 

4A – LSR – Accumulator 6A – ROR – Accumulator 

4B – Future Expansion 6B – Future Expansion 

4C – JMP – Absolute 6C – JMP – Indirect 

4D – EOR – Absolute 6D – ADC – Absolute 

4E – LSR – Absolute 6E – ROR – Absolute 

4F – Future Expansion 6F – Future Expansion 

50 – BVC 70 – BVS 

51 – EOR – (Indirect), Y 71 – ADC – (Indirect), Y 

52 – Future Expansion 72 – Future Expansion 

53 – Future Expansion 73 – Future Expansion 

54 – Future Expansion 74 – Future Expansion 

55 – EOR – Zero Page, X 75 – ADC – Zero Page, X 

56 – LSR – Zero Page, X 76 – ROR – Zero Page, X 

57 – Future Expansion 77 – Future Expansion 

58 – CLI 78 – SEI 

59 – EOR – Absolute, Y 79 – ADC – Absolute, Y 

5A – Future Expansion 7A – Future Expansion 

5B – Future Expansion 7B – Future Expansion 

5C – Future Expansion 7C – Future Expansion 

5D – EOR – Absolute, X 7D – ADC – Absolute, X 

5E – LSR – Absolute, X 7E – ROR – Absolute, X 

5F – Future Expansion 7F – Future Expansion 
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80 – Future Expansion A0 – LDY – Immediate 

81 – STA – (Indirect, X) A1 – LDA – (Indirect, X) 

82 – Future Expansion A2 – LDX – Immediate 

83 – Future Expansion A3 – Future Expansion 

84 – STY – Zero Page A4 – LDY – Zero Page 

85 – STA – Zero Page A5 – LDA – Zero Page 

86 – STX – Zero Page A6 – LDX – Zero Page 

87 – Future Expansion A7 – Future Expansion 

88 – DEY A8 – TAY 

89 – Future Expansion A9 – LDA – Immediate 

8A – TXA AA – TAX 

8B – Future Expansion AB – Future Expansion 

8C – STY – Absolute AC – LDY – Absolute 

8D – STA – Absolute AD – LDA – Absolute 

8E – STX – Absolute AE – LDX – Absolute 

8F – Future Expansion AF – Future Expansion 

90 – BCC B0 – BCS 

91 – STA – (Indirect), Y B1 – LDA – (Indirect), Y 

92 – Future Expansion B2 – Future Expansion 

93 – Future Expansion B3 – Future Expansion 

94 – STY – Zero Page, X B4 – LDY – Zero Page, X 

95 – STA – Zero Page, X B5 – LDA – Zero Page, X 

96 – STX – Zero Page, Y B6 – LDX – Zero Page, Y 

97 – Future Expansion B7 – Future Expansion 

98 – TYA B8 – CLV 

99 – STA – Absolute, Y B9 – LDA – Absolute, Y 

9A – TXS BA – TSX 

9B – Future Expansion BB – Future Expansion 

9C – Future Expansion BC – LDY – Absolute, X 

9D – STA – Absolute, X BD – LDA – Absolute, X 

9E – Future Expansion BE – LDX – Absolute, Y 

9F – Future Expansion BF – Future Expansion 
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C0 – CPY – Immediate E0 – CPX – Immediate 

C1 – CMP – (Indirect, X) E1 – SBC – (Indirect, X) 

C2 – Future Expansion E2 – Future Expansion 

C3 – Future Expansion E3 – Future Expansion 

C4 – CPY – Zero Page E4 – CPX – Zero Page 

C5 – CMP – Zero Page E5 – SBC – Zero Page 

C6 – DEC – Zero Page E6 – INC – Zero Page 

C7 – Future Expansion E7 – Future Expansion 

C8 – INY E8 – INX 

C9 – CMP – Immediate E9 – SBC – Immediate 

CA – DEX EA – NOP 

CB – Future Expansion EB – Future Expansion 

CC – CPY – Absolute EC – CPX – Absolute 

CD – CMP – Absolute ED – SBC – Absolute 

CE – DEC – Absolute EE – INC – Absolute 

CF – Future Expansion EF – Future Expansion 

D0 – BNE F0 – BEQ 

D1 – CMP – (Indirect), Y F1 – SBC – (Indirect), Y 

D2 – Future Expansion F2 – Future Expansion 

D3 – Future Expansion F3 – Future Expansion 

D4 – Future Expansion F4 – Future Expansion 

D5 – CMP – Zero Page, X F5 – SBC – Zero Page, X 

D6 – DEC – Zero Page, X F6 – INC – Zero Page, X 

D7 – Future Expansion F7 – Future Expansion 

D8 – CLD F8 – SED 

D9 – CMP – Absolute, Y F9 – SBC – Absolute, Y 

DA – Future Expansion FA – Future Expansion 

DB – Future Expansion FB – Future Expansion 

DC – Future Expansion FC – Future Expansion 

DD – CMP – Absolute, X FD – SBC – Absolute, X 

DE – DEC – Absolute, X FE – INC – Absolute, X 

DF – Future Expansion FF – Future Expansion 
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APPENDIX E 
 

SUMMARY OF ADDRESSING MODES 
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This appendix is to serve the user in providing a reference for the 

MCS650X addressing modes. Each mode of address is shown with a 

symbolic illustration of the bus state at each cycle during the instruction 

fetch and execution. The example number as found in the text is provided 

for reference purposes. 

 

 

 

 

 

 

 

E.1 IMPLIED ADDRESSING 
 

Example 5.3: Illustration of implied addressing 

 

 

 

 

 

 

 

 

 

 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1     PC PC + 1 OP CODE Fetch OP CODE 

2     PC + 1 PC + 1 New 
OP CODE 

Ignore New 
OP CODE; 
Decode Old 
OP CODE 

3     PC + 1 PC + 2 New 
OP CODE 

Fetch New 
OP CODE; 
Execute Old 
OP CODE 
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E.2 IMMEDIATE ADDRESSING 

 

Example 5.4: Illustration of immediate addressing 

 

 

 

 

E.3 ABSOLUTE ADDRESSING 

 

Example 5.5: Illustration of absolute addressing 

 

 

 

 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1    PC PC + 1 OP CODE Fetch OP CODE 

2    PC + 1 PC + 2 DATA Fetch DATA, 
Decode OP CODE 

3    PC + 2 PC + 3 New 
OP CODE 

Fetch New 
OP CODE; 
Execute Old 
OP CODE 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1    PC PC + 1 OP CODE Fetch OP CODE 

2    PC + 1 PC + 2 ADL Fetch ADL, 
Decode OP CODE 

3    PC + 2 PC + 3 ADH Fetch ADH 
Hold ADL 

4    ADH, ADL PC + 3 DATA Fetch DATA 

5    PC + 3 PC + 4 New 
OP CODE 

Fetch New 
OP CODE, 
Execute Old 
OP CODE 
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E.4 ZERO PAGE ADDRESSING 
 

Example 5.6: Illustration of zero page addressing 

 

 

 

E.5 RELATIVE ADDRESSING – (Branch Positive, no crossing of page 
 boundaries) 

 

Example 5.8: Illustration of relative addressing branch positive taken, 
  no crossing of page boundaries 

 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

     
1    PC PC + 1 OP CODE Fetch OP CODE 

2    PC + 1 PC + 2 ADL Fetch ADL, 
Decode OP CODE 

3    00, ADL PC + 2 DATA Fetch DATA 

4    PC + 2 PC + 3 New 
OP CODE 

Fetch New 
OP CODE, 
Execute Old 
OP CODE 

Cycle Address Bus Data Bus 
External 
Operation 

Internal 
Operation 

     
1 0100 OP CODE Fetch 

OP CODE 
Finish Previous Operation, 
Increment Program 
Counter to 0101 

2 0101 +50 Fetch 
Offset 

Interpret Instruction, 
Increment Program 
Counter to 0102 

3 0102 Next 
OP CODE 

Fetch Next 
OP CODE 

Check Flags, Add 
Relative to PCL, Increment 
Program Counter to 
0103 

4 0152 Next 
OP CODE 

Fetch Next 
OP CODE 

Transfer Results to 
PCL, Increment Program 
Counter to 0153 
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E.6 ABSOLUTE INDEXED ADDRESSING – (with pages crossing) 

 Step 5 is deleted and the data in step 4 is valid when no page 
 crossing occurs 

 

Example 6.7: Absolute Indexed; with Page Crossing 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation Increment 
PC to 101 

2 0101 BAL Fetch BAL Interpret Instruction 
Increment PC to 102 

3 0102 BAH Fetch BAH Add BAL + Index 
Increment PC to 103 

4 BAH, BAL+X DATA 
(ignore) 

Fetch DATA 
(Data is ignored) 

Add BAH + Carry 

5 BAH+1, 
BAL+X 

DATA Fetch DATA  

6 0103 Next OP 
CODE 

Fetch Next 
OP CODE 

Finish Operations 
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E.7 ZERO PAGE INDEXED ADDRESSING 
 

Example 6.8: Illustration of Zero Page Indexing 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation, 
0101 → PC 

2 0101 BAL Fetch Base 
Address Low 
(BAL) 

Interpret Instruction, 
0102 → PC 

3 00,BAL DATA 
(Dis- 
carded) 

Fetch 
Discarded 
DATA 

Add: BAL + X 

4 00,BAL+X DATA Fetch DATA 
Address 

 

5 0102 Next OP 
CODE 

Fetch Next 
OP CODE 

Finish Operation 
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E.8 INDEXED INDIRECT ADDRESSING 
 

Example 6.10: Illustration of Indexed Indirect Addressing 
  

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation, 
0101 → PC 

2 0101 BAL Fetch BAL Interpret Instruction, 
0102 → PC 

3 00,BAL Data 
(Dis- 
carded) 

Fetch 
Discarded 
Data 

Add BAL + X 

4 00,BAL+X ADL Fetch ADL Add 1 to BAL + X 

5 00,BAL+X+1 ADH Fetch ADH Hold ADH 

6 ADH, ADL DATA Fetch DATA  

7 0102 Next OP 
CODE 

Fetch Next OP 
CODE 

Finish Operation 
0103 → PC 
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E.9 INDIRECT INDEXED ADDRESSING (with page crossing) 

 Step 6 is deleted and the data in step 5 is valid when no page 
 crossing occurs 

 

Example 6.12: Indirect Indexed Addressing (with Page Crossing) 
 

Cycle 
Address 
Bus 

Data 
Bus  

External 
Operation 

Internal 
Operation 

1 0100 OP CODE Fetch OP CODE Finish Previous 
Operation, 
0101 → PC 

2 0101 IAL Fetch IAL Interpret Instruction, 
0102 → PC 

3 00,IAL BAL Fetch BAL Add 1 to IAL 

4 00,IAL+1 BAH Fetch BAH Add BAL + Y 

5 BAH,BAL+Y DATA (Dis-
carded) 

Fetch DATA 
(Discarded) 

Add 1 to BAH 

6 BAH+1 
BAL+Y 

DATA Fetch DATA  

7 0102 Next OP 
CODE 

Fetch Next OP 
CODE 

Finish Operation 
0103 → PC 
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The MCS650X microprocessors have a special form of addressing known 

as Indirect. The writeup on Indirect addressing describes the basic 

operation of Indirect. 

 

It is the intent of this discussion to acquaint the user with some of the uses 

and applications of Indirect addressing. 

 

The Indirect address is really an address that would have been coded in 

line as in the case of Absolute except for the fact that the address is not 

known at the time the user writes the program. As has been indicated 

several times in the basic body of the documentation, it is significantly 

more efficient with the organization of the MCS650X to assign addresses 

and implement them if the addressing structure is known. However, that 

is not always possible to do. For instance, in order to minimize the coding 

of a subroutine or general purpose set of coding, it is often desirable to 

work with a range of addressing that is not possible to cover in a normal 

index, or in the case of subroutine where it is necessary for the addresses 

to be variable depending on which part of the whole program called the 

address. 

 

It is probably this discussion which best amplifies the need for calculated 

addresses. It should be fairly obvious to the user that a general purpose 

subroutine cannot contain the address of the operations. Therefore, 

instead of having the instruction LDA followed by the value that the 

programmer wants to load, in a subroutine it may be desirable to do a 

Load A from a calculated or specified address. 

 

The use of the Indirect Addressing Mode is to give the user a location in 

Page Zero in which can be put the calculated address. Then the subroutine 

instruction can call this calculated address using the form Load A from an 

address pointed to by the next byte in program sequence. The word 

“indirect” technically comes from the fact that instead of taking the 

address which is immediately following the instruction, the next value in 

program sequence is a pointer to the address. 
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The indirect pointer will be referred to from now on as IAL, because it is 

a Zero Page address and, therefore, is a low order byte. The indirect 

instructions are written in the form “Load A” followed by IAL. 

IAL points to an address which had been previously stored into Page Zero. 

This gives the user the flexibility of addressing anywhere in memory with 

a calculated address. However, the real value of indirect is not in just 

having Indirect but having the ability to have Indirect modified. This is the 

reason for which indirect indexed instruction is implemented rather than 

straight indirect. An example of the indirect indexed in subroutining is 

covered in Section 6.5, But it should be noted that the indirect indexed 

instruction should be used whenever the user does not know the exact 

address at time of compilation. Although there may be other interesting 

and esoteric uses of the indirect index instruction, this is the most common 

one. 

 

 

 

 

 

The second form of indirect is very powerful for certain types of 

applications. Chapter 11 shows the use of tables which have pointers and 

the advantage of running down one table of pointers until a match is 

found and then using the same index to address a second table to 

perform an operation. This is the classical stack processor type of 

architecture but it requires a special discipline at the time a program is 

originally defined. Both the indirects require a concept of memory 

management that is not obvious to the novice programmer. 

 

The concept of indexed indirect is that memory has to be viewed as a 

series of tables, in which access to one set of tables is accomplished by 

indexing through a list of pointers. One set of tables might be searched 

to perform some type of testing or operation. Then the same index is then 

used to process another set of pointers. This concept is only applicable to 

operations in which a variety of inputs are being serviced. A classical 

application is when several remote devices are being managed by the 

same control program. An example might be having three teletypes tied 

on to a device, each teletype is being manually controlled and can be 
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under control of the user program. In this type of message handling 

environment, the control program for the teletypes does nothing more 

than collect strings of data from the input device and then performs 

operations on the string upon seeing a control signal, usually a carriage 

return in this case of the teletype. Because any one of the teletypes can 

be causing any one of the series of operations, this program does not 

lend itself well to the concept of absolute addressing. In fact, most of the 

subroutines which deal with the individual processing should be written 

address independent. This normally allows the addition of more devices 

without paying any penalty in terms of programming. Therefore, this is a 

subroutine or nonabsolute type of operation in which the indirect indexed 

would not apply because each of the various operations use a function 

of position. In other words, one can assign a series of tables that point at 

the teletype itself; another set that points at an outgoing message stream 

and another set that points to a series of tables which keep the status of 

the device. Each of these pointers is considered to be an individual 

address at the beginning of a string. Each string is a variable length. The 

teletype strings may consist of a three character message followed by a 

character return or a 40 character message followed by a character 

return. In the MCS650X, this system will be implemented by means of 

developing a series of indirect pointers. Each teletype will have an 

indirect pointer. Its I/O port has another indirect pointer that points at the 

put-away string, another one that points at the teletype message output 

string, another one that points at its status table. If all of the teletypes 

work this way, it can be seen that the coding to put data into the input 

message table is the same for all the teletypes and is totally independent 

of the teletype in which data is being stored. 

 

The index register X serves as a control for the tables so that if all tables 

were sequentially organized, X would point at the proper value for each 

operation. A sample operation might be: read teletype three, transfer 

the data to teletype three input register, update teletype three counter, 

check to see that teletype three is still active, and decide whether or not 

to return to signal teletype three back. The coding to perform each of 

these operations would be exactly the same as coding for teletype two, 

if the tables were organized such that X was an index register for the 

pointers. 
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This is the type of string manipulation application for which indexed 

indirect was designed and only when a program can be organized for 

this technique is the indirect used to its maximum potential. The 

advantages for organizing for this type of approach when the problem 

requires string manipulation is significant; the comprehensive I/O 

program is roughly one half the memory and one fourth the execution 

time of several other microprocessors which do not have this indexed 

indirect feature. 
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The number 1789 is assumed by most people to mean one thousand, 

seven hundred eighty-nine, or 1 x 103 + 7 x 102 + 8 x 101 + 9 x 100. 

However, until the number base is defined, it might mean: 

 

1 x 163 + 7 x 162 + 8 x 161 + 9 x 160 

 

which is hexadecimal and the form used in the microprocessor. 

 

In order to distinguish between numbers on different bases, 

mathematicians usually write 178910 or just 1789 for base 10, or 

decimal, and 178916 for base 16 for hexadecimal. Because very few 

computers or I/O devices allow subscripting, all hexadecimal numbers 

are preceded by a $ notation. Then 1789 means base 10 and $1789 

means base 16. Why hexadecimal? This is a convenient way of 

representing 2 digits in 8 bits. 

 

The MCS650X is a byte-oriented microprocessor which means most 

operations have 8-bit operations. 

 

There are 2 ways to look at 8 bits. The first is as 8 individual bits in which 

00001000 means that bit 3 (bit 7 to 0 representation) is on and all other 

bits are off or as an 8-bit binary number in which case the value is: 

 

0 x 27 + 0 x 26 + 0 x 25 + 0 x 24 + 1 x 23 + 

0 x 22 + 0 x 21 + 0 x 20 = 8 or $08. 

 

For logic analysis purposes, each bit is unique, but for arithmetic purposes, 

the 8 bits are treated as a binary number. 
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Binary Arithmetic Rules: 
 
0 + 0 = 0 
0 + 1 = 1 
1 + 0 = 1 
1 + 1 = 0 with a carry 
 
Carry occurs when the resulting number is too long for the base. 
 
In decimal:  8 + 4 = 2 + 10 
In hexadecimal,  $8 + $4 = $C (see hexadecimal details) 
 
so that 8 + 4 has a carry in base 10 but not in base 16. 
 
Using these rules to add 8 + 2 in binary gives the following: 
 
00001000   8 1 x 23  
00000100 +2 1 x 21 

00001010 10 1 x 23 + 1 x 21 
 
Therefore, any number from 0 to 255 may be represented in 8 bits, and 
binary addition performed using the basic binary add equation: 
 
Rj = (Aj ⊻⊻⊻⊻ Bj ⊻⊻⊻⊻ Cj – 1) 
 
where, as defined previously, ⊻⊻⊻⊻ is notation for Exclusive-Or. 
 
In most applications, it is also necessary to subtract. Subtract operations 
either require a different hardware implementation or a new way of 
representing numbers. A combination of this is to implement a simple 
inverter in each bit. This would make: 
 
00001100   12 
11110011 –12 
 
However, when subtracting 12 from 12, the result should also be 0. 
 
00001100 +12 
11110011 –12 
11111111     0 
 
However, if a carry is added to the complemented number: 
 
   1  Carry 
00001100   12 
11110011  –12 
00000000 =     0 
 

If, instead of representing –12 as the complement of 12, it is represented 

as the complement plus carry, the following is obtained: 
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11110011 = 12 
    1 = Carry 
11110100 = –12 
00001100 +12 
00000000 =     0 
 
This representation is called two's complement and represents the way 
that negative numbers are kept in the microcomputer. Below are 
examples of negative numbers represented in two's complement form. 
 
–0 = 00000000 
–1 = 11111111 
–2 = 11111110 
–3 = 11111101 
–4 = 11111100 
–5 = 11111011 
–6 = 11111010 
–7 = 11111001 
–8 = 11111000 
–9 = 11110111 
 
Hexadecimal is the representation of lowing table shows the advantages 
of Hex: 
 

Hexadecimal Binary Decimal 

0 0000 00 

1 0001 01 

2 0010 02 

3 0011 03 

4 0100 04 

5 0101 05 

6 0110 06 

7 0111 07 

8 1000 08 

9 1001 09 

A 1010 10 

B 1011 11 

C 1100 12 

D 1101 13 

E 1110 14 

F 1111 15 
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Because 16 is a multiple of 2, hexadecimal is a convenient shorthand for 
representation of 4 binary digits or bits. The rules on arithmetic also hold. 
 
    0100 1111      4F 
+ 0110 0010    +62 
    1011 0001      B1 
 
To take advantage of this shorthand, all addresses in this manual are 
shown in hexadecimal notation. It should be noted that the reader should 
learn to operate in Hex as soon as possible. Continual translation back to 
decimal is both time consuming and error prone. Working in Hex and 
binary will quickly force learning of hexadecimal manipulation and the 
familiarity with working with this convenient representation. 
 
Although many microcomputer applications can successfully be 
accomplished with binary operations, some applications are best 
performed in decimal. Although the use of 1 decimal character per byte 
would be a legitimate way to solve this problem, this is an inefficient use 
of the capability of the 8-bit byte. 
 
The microprocessor allows the use of packed BCD representation. This 
representation is, in 4-bit form: 
 
0 = 0000 
1 = 0001 
2 = 0010 
3 = 0011 
4 = 0100 
5 = 0101 
6 = 0110 
7 = 0111 
8 = 1000 
9 = 1001 
 
In BCD, the number 79 is represented: 
 

    Binary BCD    Hex 
01111001 =  79 =    79 
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The microprocessor automatically takes this into account and corrects for 
the fact that 
 

Decimal BCD Hex 
 79 = 01111001 79 = 01111001 
+ 12 = 00010010 12 = 00010010 
 91 = 10010001 88 = 10001011 

 
The only difference between Hex and BCD representation is that the 
microprocessor automatically adjusts for the fact that BCD does not allow 
for Hex values A – F during add and subtract operations. 
 
The offset which follows a branch instruction is in signed two's complement 
form which means that: 
 

 $+50 = +80 = 01010000 
and $–50 = –80 = 10110000 
           Proof =  00000000 

 
The sign for this operation is in bit 7 where a 0 equals positive and a 1 
equals negative. 
 
This bit is correct for the two's complement representation but also flags 
the microprocessor whether to carry or borrow from the address high 
byte. 
 
The following 4 examples represent the combinations of offsets which 
might occur (all notations are in hexadecimal): 
 
Example H.4.1: Forward reference, no page crossing 
 

0105 BNE 
0106 +55 
0107 Next OP CODE 

 
To calculate next instruction if the branch is taken 
 
 Offset  +55 01010101 
 Address Low 
   For next 
   OP CODE  07 00000111 
    5C 01011100 
 
With no carry giving 015C as the result. 
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Example H.4.2: Backward reference, no page crossing 
 
   015A BNE 
   015B –55 
   015C Next OP CODE 
 
To calculate if branch is taken, 
 

 Offset  –55 = AB = 10101011 
+ Address Low for 

   Next OP CODE +5C = 5C = 01011100 
    07     07    00000111 

 
The carry is expected because of the negative offset and is ignored, thus 
giving 0107 as the result. 
 
Example H.4.3: Backward reference if page boundary crossed 
 
   0105 BNE  
   0106 –55  
   0107 Next OP CODE 
 
To calculate if branch is taken, first calculate a low byte 
 

 Offset  –55 = AB = 10101011 
+ Address Low for 

   Next OP CODE +07 = 07 = 00000111 
    B2  = B2 = 10110010 

 
There is no carry from a negative offset; therefore, a carry must be 
made: 
 
   –1 = –1 = FF = 11111111 
 + Address High      = 01 =01 = 00000001 
           00 =00 = 00000000 
 
This gives 00B2 as a result. 
 
Example H.4.4: Forward reference across Page boundary  
 
   00B0 BNE 
   00B1 +55 
   00B2 Next OP CODE 
 
To calculate next instruction if branch is taken, 



 

 

H-8 

 

 Offset 55 = 01010101 
+ Address Low for 

   Next OP CODE B2 = 10110010 
  07 = 00000111 

 
with carry on positive number. 
 
    +1   1 = 00000001 
      + Address High  00 = 00000000 
             1 = 00000001 
 
which gives 0107. 
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